
1

Machine Learning Camera

University of Evansville

Christian Olson

Advisor: Mark Randall

4/29/2019 Evansville, Indiana

2

Table of Contents

1. Introduction

2. Problem Definition

2.1. Trinity Fire-Fighting Home Robot Competition

2.2. Client Requirements

2.3. Requirements Completed

3. Design Solution

3.1. Hardware

3.2. Software Design

3.2.1. Vectorize function

3.3. K-Nearest Neighbors

3.4. Considerations

4. Results

References

Appendix A: Trinity Fire-Fighting Home Robot Competition Images

Appendix B: Source Code

Appendix C: Program and Function Usage Guide

List of Figures

Figure 1: Previous University of Evansville Robots

Figure 2: The Machine Learning Camera

Figure 3: K-Nearest Neighbors illustration with a K-value of 5

Figure 4: Detection Image

3

4

1. Introduction

 The goal of this project was to write a program that uses a camera to recognize patterns

and images based on machine learning. Most cameras simply take a picture and store it in memory,

however with modern advances in computing technology it is possible to teach a computer to

understand the images that it receives from a camera input. More specifically, this camera is

connected to a small Raspberry Pi computer which reads the images in real time and give feedback

via a connected monitor. In addition to recognizing its target pattern, this camera is a base platform

and proof of concept which can be modified to assist future University of Evansville competition

teams going to the Trinity College Fire-Fighting Home Robot Competition by acting as the visual

input device for their fire-fighting robot in order to identify specific target objectives of the

competition.

2. Problem Definition

 When a human or an animal looks at an object they essentially capture an image of the

object, which is processed through their brains to provide them with the knowledge and

understanding of what they are looking at. For instance, if you looked at a cat the rods and cones

in your eyes would capture the image and send it to your brain, which would process the image

and tell you that what you are looking at matches your preconceived notion of what a cat ought to

look like. Computers do not inherently have this ability which we take for granted, their

understanding of a picture of a cat stops at the level of image and does not naturally continue on

to recognizing a cat. The primary aim of this project is to provide a machine learning algorithm

which will be able to look at several examples of an abstract concept and learn how to understand

what is or is not an example of this object. This is done by forming a reference vector library of

5

processed image vectors and the values of their abstract representations. This project serves as a

prototype and proof of concept for other applications of machine learning computer vision systems

such as facial recognition systems, self-driving cars, medical imagers, industrial monitors, and

agricultural monitors.

2.1. Trinity Fire-Fighting Home Robot Competition

 Future iterations of this camera will be used in conjunction with our Trinity Fire-Fighting

Home Robot team in order to provide it with the visual inputs required for the competition. The

Trinity Fire-Fighting Robot competition is broken up into three levels, in order to advance to the

next level a robot must complete the tasks required by the previous level. In the first level there is

a single arena area with predetermined dimensions and layout which represents a simulated house,

the goal of level one is to find and put out a single candle which has been set up somewhere in the

simulated house. In level two the robot must complete the same task but the layout of the simulated

house is randomized. In level three the robot is also

required to rescue a simulated baby which is located in

a simulated cradle somewhere in the simulated house,

additionally level three consists of two arenas

connected by a bridge. The Computer Vision Camera

comes in to play in the third and final round of the

competition, where one of the options is for the robot

to identify the simulated cradle which contains the

simulated baby by identifying the patterns on its front

and sides. Additionally, it will be used to identify the
Figure 1: Previous University of Evansville

Robots

6

safe area where the simulated baby should be taken in order to score. [1] (see Appendix A for target

images).

2.2. Client Requirements

• The Machine Learning Camera recognizes the cradle base patterns and the safe area

symbol.

• The Machine Learning Camera recognizes a chess pawn on a standard chess board.

◦ Note: there was a miscommunication, this second requirement was never expected, but

was left in the original proposal by mistake.

2.3. Requirements Completed

• The Machine Learning Camera recognizes the central cradle target accurately.

3. Design Solution

 The solution to the problem of developing a camera, which would recognize what it is

looking at, is to use image processing to accentuate the relevant features of the image and then to

format the image into a vector of features which can be fed into a machine learning algorithm. For

the implementation used in this project a processed image vector is given to a program which

implements the K-Nearest Neighbors algorithm on a large sample set of processed image vectors

which have already been identified. This produces a simple yes or no answer to whether the image

contains the target object.

7

3.1. Hardware

 Though the Machine Learning Camera is

primarily a software project; no software exists in a

vacuum. The Machine Learning Camera is

composed of two parts: A Raspberry Pi 3B+ single

board computer [3] and a Logitech C270 HD

Webcam [5]. The exact camera does not make much

of a difference as the software will act on the image files captured by it rather than directly on its

input, though the program expects all images to be 640x480 pixels. Additionally, as it is, the device

requires a user interface system (monitor, keyboard, mouse) to operate, though future changes can

be easily made to reconfigure the project for integration with a robot, these changes would include

setting the device such that the program starts on boot and make the output on an IO pin rather

than to a monitor.

3.2. Software Design

 The Machine Learning Camera’s software is the primary component of the project. There

are three primary programs and a function library which were written for the project. The first

program is the image capture program imcap.cpp which captures images into the desired file. The

second program is the vectorization program vectorize2.cpp, so named because it is the second

iteration of the program, which can read in the images from a file and print the resulting vector

representation along with image values into an output file which serves as the sample data set for

the K-Nearest Neighbors algorithm. The last, and arguably most important program is the actual

runtime program KNN.cpp which uses the K-Nearest Neighbors algorithm to perform the image

Figure 2: The Machine Learning
Camera

8

recognition and machine learning. The KNN program has four separate run modes, each of which

call the vectorize function to turn their captured input images into formatted vectors and the

compare_knn function to perform the actual K-Nearest Neighbors analysis. The four run modes

are: single capture, single capture with user confirmation, single capture with image process

display, and continuous capture and compare. (see appendix B for code, see appendix C for

function and program usage guide).

3.2.1. Vectorize Function

The vectorize function is the backbone of the Machine Learning Camera. The function

takes an image matrix and returns a 12-intager vector which represents the image mathematically.

The image matrix is first put through an image processing stage which performs the following

transforms and operations:

1. Input image is converted to grayscale to reduce complexity.

2. Image intensity is decreased by 75% to help remove small differential edges from the later

Sobel filters.

3. Image is blurred to remove extraneous details; this is done because the patterns the device

is looking for are composed of hard edges which will still be preserved through the blurring

process.

4. Edges are detected by using a Sobel filter in both the X and Y dimensions and adding the

resulting images together.

5. The image is resized to one quarter the original size in each dimension, this is done to make

the image more manageable in the vectorization algorithm.

9

6. The image has its pixel intensities multiplied by four.

These processes are performed using the OpenCV library [4], which is a free open source

library designed for image processing and computer vision. The images produced in the image

processing step are converted to vectors by first iterating over every pixel to produce a 160-

intager vector containing the sums of the pixel intensities of every column as well as a single

sum of all the pixels. The column intensity vector is then divided by the total intensity and

multiplied by 10,000 in order to cause every image to have a total value of 10,000 at this stage.

The standardized vectors are then used to find the base 2 logarithmic histogram of the column

intensities represented as a 12-intager vector. This vector is then returned to whatever function

called the vectorize function. There is also a variant vectorize_for_demo function which saves

images partially through the processing function for the purpose of demonstration and

debugging (see appendix B for code, see appendix C for function and program usage guide).

3.3. K-Nearest Neighbors

 The K-Nearest Neighbors algorithm, or

KNN, is one of the simplest and most versatile

machine learning algorithms. It takes arguments

K, S, and V, where S is the sample set of labeled

image vectors, K is the number of vectors which

will be used for the comparison, and V is the

input image vector which is supposed to be

identified. The KNN algorithm treats the vectors as points in higher dimensional space and

compares the distances between V and each vector in the set S, keeping the K vectors from set S

Figure 4: K-Nearest Neighbors illustration
with a K-value of 5 [6]

10

with the shortest distance from V. These K image vectors have their labels compared, whatever the

majority of the K labels are is what V is labeled. When running in learning mode, a human operator

determines whether the answer is correct or not, and V is added into S with the appropriate label,

increasing the size of S and thus increasing the accuracy of the KNN algorithm. Though the KNN

algorithm is technically not a learning algorithm, as it does not self-instruct, it is, however,

colloquially considered a machine learning algorithm. [2]

3.4. Considerations

 Any project undertaken should be considered from all angles before it’s realization. Below

are the considerations of safety, environmental protection, social and political ramifications, and

the manufacturability of the Machine Learning Camera.

3.4.1. Safety

 With any electronic device there are certain safety concerns to be considered. Any

interaction between the Machine Learning Camera and water is inadvisable, users are also advised

to keep the device out of reach of small children. No part of the Machine Learning Camera is

edible.

3.4.2. Environmental Protection

 All components of the Machine Learning Camera are, in part or in whole, recyclable, and

should be accepted at any electronics recycling location.

3.4.3. Social and Political Ramifications

 In the modern social and political landscape of the Western World there are many concerns

as to the potential societal dangers of a camera which can identify items by sight. These concerns

11

run the gamut from very real concerns about invasion of personal privacy to the most outlandish

theories regarding robot uprisings. While it is possible that the Machine Learning Camera could

be used in these ways, it is considered to be a very unlikely risk that this project will contribute to

any such problems.

3.4.4. Manufacturability

 The hardware for the Machine Learning Camera is relatively inexpensive, and would thus

be quite simple to mass produce. There is, however, the issue that the project will be using devices,

such as the Raspberry Pi [3], who’s manufacturing rights belong to neither the creator nor to the

client.

4. Results

 The final result of the Machine

Learning Camera is that it is a resounding

success at detecting one of the Trinity Fire-

fighting Robot Competition patterns (the

center target, see appendix A). The

maximum reliable detection range is 18

inches, not ideal for real-world applications, but serviceable within the confines of the competition

testing environment. This project provides both a framework for future work along these lines and

a proof of concept for the idea of using machine learning for this sort of small scale problem.

Figure 4: detection image

12

References

[1] Trinity College. (2018, October). ‘Trinity College Fire-Fighting Home Robot Contest 2019
 Rules V1.0.’ Hartford, Connecticut. [Online]. Available:
 https://www.dropbox.com/sh/m0i9448atx5fa3l/AABnYrj5m2lRhOtFFz7JsYeba?
 dl=0&preview=TCFFHRC2019RulesV1.0.pdf. [accessed: 3- Dec- 2019].

[2] Brownlee, J. (2019). K-Nearest Neighbors for Machine Learning. [online] Machine Learning
Mastery. Available at: https://machinelearningmastery.com/k-nearest-neighbors-for-machine-
learning/ [Accessed 22 Mar. 2019].

[3] Raspberry Foundation, ‘Raspberry Pi — Teach, Learn, and Make with Raspberry Pi’,
Raspberry Pi, 2018. [Online]. Available: https://www.raspberrypi.org/. [Accessed: 04-
Dec- 2018]

[4] OpenCV Team, ‘OpenCV library,’ About - OpenCV library. 2018 [Online]. Available:
https://opencv.org/. [Accessed: 05-Dec-2018].

[5] Webcam, C. and Webcam, C. (2019). Logitech C270 HD Webcam, 720p Video with Built-in
Mic & Lighting Correction. [online] Logitech.com. Available at: https://www.logitech.com/en-
us/product/hd-webcam-c270 [Accessed 22 Mar. 2019].

[6] Chattopadhyay, researchgate.net, 2015. [Online]. Available:
https://www.researchgate.net/figure/In-this-k-Nearest-Neighbor-illustration-with-k-5-the-
central-black-square-more_fig1_281289672. [Accessed: 29- Apr- 2019]

https://www.dropbox.com/sh/m0i9448atx5fa3l/AABnYrj5m2lRhOtFFz7JsYeba

13

Appendix A: Trinity Fire-Fighting Home Robot Competition Images
Figure A: front side of cradle Figure B: right hand side of cradle

 Figure C: left hand side of cradle Figure D: safe area symbol

14

Appendix B: Source Code

Code for KNN.cpp
//KNN.cpp
#include <opencv2/opencv.hpp> //image processing
#include <fstream> //filestreams
#include <iostream> //iostreams
#include <vector> //for the output vectors
#include "vectorizer.hpp" //for vectorizing the captured images

using namespace std;

int compare_knn(int k, string vecfile, vector<int> input);
//return 1 if match, else 0
double vecdist(vector<int> A, vector<int> B);
//returns distance between A&B
void continuous_knn(int k, string infile, cv::VideoCapture cap);
//continuously call compare_knn and display the result

int main(int argc, char ** argv)
{
 if(argc < 4)
 {
 cout << "not enough arguments, expect "
 << "\"./KNN input_filename K mode\"" << endl;
 return 1;
 }
 string vecfile = argv[1];
 int k = atoi(argv[2]);
 int mode = atoi(argv[3]);
 //1 for learning mode, 0 for regular, 2 for data_capture,
 // 3 for continuous runtime

 cv::VideoCapture cap(0);

 if(!cap.isOpened())
 return -1;

 if(mode == 3)
 {
 continuous_knn(k, vecfile, cap);
 return 0;
 }
 while(1)
 {
 cv::Mat frame;
 cap >> frame;
 cv::imshow("img", frame);
 if(cv::waitKey(10) >= 0)
 {
 break;
 }
 }
 cv::destroyWindow("img");
 cv::Mat image;

15

 cap >> image;
 vector<int> base2hist(12);
 if(mode == 2)
 base2hist = vectorize_for_demo(image);
 else
 base2hist = vectorize(image);

 int test_result;
 test_result = compare_knn(k, vecfile, base2hist);

 string imstr = "/home/pi/MLC/" + to_string(test_result) + ".png";
 while(1)
 {
 cv::imshow("result", cv::imread(imstr));
 if(cv::waitKey(10) >= 0)
 {
 cv::destroyWindow("result");
 break;
 }
 }
 if(mode == 1)
 {
 cout << "is this correct? (0 for no, 1 for yes)"<< endl;
 int val;
 cin >> val;

 ofstream printer;
 printer.open(vecfile, std::ofstream::out | std::ofstream::app);
 printer << endl;

 if(val == 0)
 test_result = 1 - test_result;
 printer << test_result << " ";
 for(int i = 0; i<12; i++)
 {
 printer << base2hist[i] << " ";
 }
 }
 return 0;
}
int compare_knn(int k, string vecfile, vector<int> input)
{
 vector<int> candidate(12);
 double candidate_dist;
 vector<double> neighbor_dists(k);
 vector<int> values(k);
 for(int i = 0; i < k; i++)
 {
 neighbor_dists[i] = 3000;//impossibly big number
 }
 ifstream neighborhood;
 neighborhood.open(vecfile);

 int value;
 while(neighborhood >> value)
 {
 for(int i = 0; i < 12; i++)
 {

16

 neighborhood >> candidate[i];
 }
 candidate_dist = vecdist(candidate, input);
 if(candidate_dist <= neighbor_dists[0])
 {
 //replace neighbor_dists[0]
 neighbor_dists[0] = candidate_dist;
 values[0] = value;
 //sort neighbor_dists so that the highest is at index 0
 for(int i = 1; i < k; i++)
 {
 if(neighbor_dists[i] >= neighbor_dists[0])
 {
 double temp = neighbor_dists[0];
 neighbor_dists[0] = neighbor_dists[i];
 neighbor_dists[i] = temp;
 temp = values[0];
 values[0] = values[i];
 values[i] = temp;
 }
 }
 }
 }

 int result = 0;
 for(int i = 0; i < k; i++)
 {
 result += values[i];
 }
 if(result >= k/2)
 return 1;
 return 0;
}

double vecdist(vector<int> A, vector<int> B)
{
 double difsquaresum = 0;
 for(int i = 0; i < 12; i++)
 {
 difsquaresum += pow((A[i]-B[i]), 2);
 }
 double dif = sqrt(difsquaresum);
 return dif;
}

void continuous_knn(int k, string infile, cv::VideoCapture cap)
{
 int test_result;
 vector<int> base2hist(12);
 cv::Mat frame;
 string imstr;
 while(1)
 {
 cap >> frame;
 cv::imshow("img", frame);
 base2hist = vectorize(frame);
 test_result = compare_knn(k, infile, base2hist);
 imstr = "/home/pi/MLC/" + to_string(test_result) + ".png";

17

 cv::imshow("result", cv::imread(imstr));
 if(cv::waitKey(10) >= 0)
 {
 break;
 }
 }
}

Code for imcap.cpp
//imcap.cpp
#include "opencv2/opencv.hpp"
#include <string.h>
#include <stdlib.h>
#include <string>

int main(int argc, char** argv)
{
 if(argc < 4)
 {
 std::cout << "not enough arguments, expect \"./imcap"
 << " output_filename start_num stop_num\"" << std::endl;
 return 1;
 }
 cv::VideoCapture cap(0);
 if(!cap.isOpened())
 return -1;
 std::string fpath = "/home/pi/MLC/images/";
 fpath += argv[1];
 fpath += "/";
 while(1)
 {
 cv::Mat frame;
 cap >> frame;
 cv::imshow(argv[1], frame);
 if(cv::waitKey(10) >= 0)
 {
 break;
 }
 }
 for(int i = atoi(argv[2]);i < atoi(argv[3]);i++)
 {
 std::string fname = fpath;
 fname += std::to_string(i);
 fname += ".png";
 cv::Mat frame;
 cap >> frame;
 cv::imshow(argv[1], frame);
 cv::imwrite(fname, frame);
 if(cv::waitKey(10) >= 0)
 {
 break;
 }
 }
 return 0;
}

18

Code for vectorize2.cpp
//vectorize2.cpp
#include <opencv2/opencv.hpp> //image processing
#include <fstream> //filestreams
#include <iostream> //iostreams
#include <string> //will make filenames easier to mess with
#include <cmath> //log2
#include "vectorizer.hpp" //for the actual vectorization
#include <vector> //vectors

int main(int argc, char ** argv)
{
 if(argc < 6)
 {
 std::cout << "not enough arguments, expect \"./vectorize2 "
 << "input_filename output_filename start_num stop_num value\""
 << std::endl;
 return 1;
 }
 std::ofstream outfile;
 string infname = argv[1];
 string outfname = argv[2];
 outfile.open(outfname, std::ofstream::out | std::ofstream::app);
 std::string infolder = "/home/pi/MLC/images/";//path to all image folders
 infolder += infname + "/"; //specific folder
 for(int input_item = atoi(argv[3]); input_item < atoi(argv[4]); input_item++)
 {
 std::string infile = infolder + std::to_string(input_item) + ".png";
//specific image file to be vectorized
 cv::Mat image_alpha = cv::imread(infile);
 vector<int> base2hist(12);
 base2hist = vectorize(image_alpha);
 //WRITE TO FILE HERE
 outfile << atoi(argv[5]) << " ";
 for(int i = 0; i < 12; i++)
 {
 outfile << base2hist[i] << " ";
 }
 outfile << std::endl;
 }
 return 0;
}

Code for vectorizer.hpp
//vectorizer.hpp
#include <opencv2/opencv.hpp> //image processing
#include <iostream> //iostreams
#include <vector>

using namespace std;

vector<int> vectorize(cv::Mat image)
{
 cv::cvtColor(image, image, CV_BGR2GRAY);
 image.convertTo(image, -1, .25, 0);

19

 cv::GaussianBlur(image, image, cv::Size(11,11), 0, 0, cv::BORDER_DEFAULT);
 cv::Size dsize;
 cv::Mat imgradx, imgrady, grad;
 cv::Sobel(image, imgradx, -3, 1, 0, 3, 1, 0, cv::BORDER_DEFAULT);
 cv::Sobel(image, imgrady, -3, 0, 1, 3, 1, 0, cv::BORDER_DEFAULT);
 cv::convertScaleAbs(imgradx, imgradx);
 cv::convertScaleAbs(imgrady, imgrady);
 cv::addWeighted(imgradx, 0.5, imgrady, 0.5, 0, grad);
 cv::resize(grad, grad, dsize, 0.25, 0.25);
 grad.convertTo(grad, -1, 4, 0);
 vector<int> vertical(160);
 double intensity = 0;
 for(int i = 0; i < 160; i++)
 {
 vertical[i] = 0;
 {
 for(int j = 0; j < grad.rows; j++)
 {
 vertical[i] += (int)grad.at<uchar>(cv::Point(i,j));
 intensity += (int)grad.at<uchar>(cv::Point(i,j));
 }
 }
 }
 intensity = intensity/10000 + 1;
 vector<int> base2hist(12);
 for(int i = 0; i < 160; i++)
 {
 int histval = log2((vertical[i]/intensity) + 1);
 if(histval > 11)
 histval = 11;
 else if(histval < 0)
 histval = 0;
 base2hist[histval]++;
 }
 return base2hist;
}

vector<int> vectorize_for_demo(cv::Mat image)
{
 cv::imwrite("/home/pi/MLC/tests/stage_1_input.png", image);
 cv::cvtColor(image, image, CV_BGR2GRAY);
 cv::Mat A = image;
 cv::imwrite("/home/pi/MLC/tests/stage_2_grayscale.png", A);
 image.convertTo(image, -1, .25, 0);
 cv::imwrite("/home/pi/MLC/tests/stage_3_darkened.png", image);
 cv::GaussianBlur(image, image, cv::Size(11,11), 0, 0, cv::BORDER_DEFAULT);
 cv::imwrite("/home/pi/MLC/tests/stage_4_blurred.png", image);
 cv::Size dsize;
 cv::Mat imgradx, imgrady, grad;
 cv::Sobel(image, imgradx, -3, 1, 0, 3, 1, 0, cv::BORDER_DEFAULT);
 cv::imwrite("/home/pi/MLC/tests/stage_5A_x-gradient.png", imgradx);
 cv::Sobel(image, imgrady, -3, 0, 1, 3, 1, 0, cv::BORDER_DEFAULT);
 cv::imwrite("/home/pi/MLC/tests/stage_5B_y-gradient.png", imgrady);
 cv::convertScaleAbs(imgradx, imgradx);
 cv::convertScaleAbs(imgrady, imgrady);
 cv::addWeighted(imgradx, 0.5, imgrady, 0.5, 0, grad);
 cv::imwrite("/home/pi/MLC/tests/stage_6_added gradients.png", grad);
 cv::resize(grad, grad, dsize, 0.25, 0.25);

20

 cv::imwrite("/home/pi/MLC/tests/stage_7_resized.png", grad);
 grad.convertTo(grad, -1, 4, 0);
 cv::imwrite("/home/pi/MLC/tests/stage_8_sharpened.png", grad);

 vector<int> vertical(160);//intensity values of entire columns
 double intensity = 0;//total intensity of all pixels

 for(int i = 0; i < 160; i++)
 {
 vertical[i] = 0;
 {
 for(int j = 0; j < grad.rows; j++)
 {
 vertical[i] += (int)grad.at<uchar>(cv::Point(i,j));
 intensity += (int)grad.at<uchar>(cv::Point(i,j));
 }
 }
 }
 intensity = intensity/10000 + 1;
 vector<int> base2hist(12);
 for(int i = 0; i < 160; i++)
 {
 //convert the 160 column intensities into a 12 intager long base
 // 2 logarithmic histogram
 int histval = log2((vertical[i]/intensity) + 1);
 if(histval > 11)
 histval = 11;
 else if(histval < 0)
 histval = 0;
 base2hist[histval]++;
 }
 return base2hist;
}

21

Appendix C: Program and Function Usage Guide

imcap.cpp

expected command line arguments: output_filename, start_num, stop_num

 imcap.cpp displays the current live camera feed until the user hits a key indicating that it

should start capturing images. N images will be captured where N is stop_num – start_num. These

images will be saved as i.png, where i is a number between start_num and stop_num, in the output

file designated output_filename. Images are captured this way every 10 microseconds. Capture

may be interrupted at any time by pressing any key on the keyboard.

vectorize2.cpp

expected command line arguments: input_filename, output_filename, start_num, stop_num, value

 vectorize2.cpp converts N images, where N is stop_num – start_num, from the input file

input_filename into vector entries in the output file output_filename. Each image whose name is

I.png, where i is a number between start_num and stop_num, is read in as an image matrix and

given to the vectorize function, the result of the vectorize function is written to the output file along

with the given value.

KNN.cpp

expected command line arguments: input_filename, K, mode

 KNN.cpp is the main program of the Machine Learning Camera. It has four separate run

modes, selected by the command line argument mode.

22

Mode 0: standard single capture. Allows the user to take a single capture from the camera, then

sends that image to the vectorizer function, that result is then sent to the compare_knn function.

The result is then displayed to the user, either that the target was identified, else it was not.

Mode 1: teaching single capture mode. Same as mode 0 except that the user tells the program

whether it was correct or incorrect after its result is displayed. The correct value and the image

vector are then added to the data set in the input file input_filename.

Mode 2: image processing display mode. Same as mode 0 except that the vectorize_for_demo

function is called in place of vectorize.

Mode 3: continuous run mode. This mode causes the program to call the continuous_knn function

which indefinitely performs vectorization and KNN on the camera input. This mode would be used

during any practical application.

int compare_knn(int k, string vecfile, vector<int> input)

Arguments:

 k: the number of samples to be kept as the nearest for comparison.

 vecfile: the filename of the dataset for the KNN algorithm.

 input: the vector which the dataset is being compared with to find the closest entries.

Returns: 1 if input is a match with the target image, 0 otherwise.

 The compare_knn function iterates over the dataset, running each through the vecdist

function with the input to determine which are the closest to it. These K-Nearest Neighbors are

then compared to see what the majority of their values are. If the majority are a match, then a 1 is

returned, else a 0 is returned.

23

double vecdist(vector<int> A, vector<int> B)

Arguments:

 A, B: two vectors of length 12 which will have their distances compared.

Returns: the Pythagorean distance between A & B.

 The vecdist function compares the two input vectors A & B by using a 12 dimensional

version of the Pythagorean theorem.

void continuous_knn(int k, string infile, cv::VideoCapture cap)

Arguments:

 k: the number of neighbors compared in the KNN algorithm.

 infile: the filename of the dataset for the KNN algorithm.

 cap: the image capture connection to the camera.

Returns: void

 The continuous_knn captures images and has them vectorized by the vectorize function

then sends the vectors to the compare_knn function, the result is then displayed to the monitor.

vector<int> vectorize(cv::Mat image)

Arguments:

 image: the image which will be vectorized

Returns: a 12 integer vector which represents the image for the KNN algorithm.

 See section 3.2.1 for specifics on the transforms performed.

24

vectorize_for_demo

Arguments:

 image: the image which will be vectorized

Returns: a 12 integer vector which represents the image for the KNN algorithm.

 Same as vectorize except that images are periodically saved for future observation by the

user.

