

Spider Robot

Mazen Alktebi, Computer Engineering

Project Advisor: Dr. Blandford

April 26, 2019

Evansville, Indiana

Acknowledgements

I would like to thank Jeff Cron for helping in 3D printing and to find the correct parts.

Also, I would like to thank Dr. Christina Howe and Dr. Blandford for their help and assistance

through the year and for their advice.

Table of Contents

I. Introduction

II. Problem Description

III. Project Design

A. Hardware

B. Software

C. Standards

IV. Cost

V. Results

VII. Conclusion

VIII. References

Table of Figures

Figure 1: Connections to STM

Figure 2: Power Connections

Figure 3: Maestro Connection to Servos

Figure 4: Wi-Fi Module

Figure 5: Circuit Schematic

Figure 6: PCB layout

Figure 7: 3D one leg parts

Figure 8: 3D Main body parts

Figure 9: Spider robot final look

Figure 10: Simple schematic

Figure 11: Servos positions

Figure 12: Smartphone App

Figure 13: Function menu

Figure 14: NodeMCU (ESP8266) Wi-Fi module

Figure 15: PID tuning initial values

Figure 16: PID tuning final values

Table of Tables

Table 1: Legs numbers

Table 2: Servos values

Table 3: Cost

I. Introduction

Exploring the world can be dangerous and rough such as in war fields and rugged

terrains, which are hard to access with normal vehicles. The objective of this project was to

create a robot that has the ability to navigate terrain that is impassable for most other land

vehicles. After researching and studying many robot designs, a spider robot style was chosen due

to the natural movement of a spider and its capability of moving around regardless of the terrain

it's facing. In this design, the Spider Robot legs have the same freedom of movement as those of

a biological spider.

The Spider Robot could be used for:

• Exploring dangerous and / or rough areas for humans

• Exploring war zones

• Inspecting unstable buildings after natural disasters such as an earthquake

• Defusing bombs such as land mines

II. Background

Using robots nowadays is very common, and people use them in many applications. The

idea here was to have a robot that can be used by individuals to reach their desired goals and to

make it easy for them to control. To reach the desired results, two approaches have been

considered. First of all, the robots design. Inspired by a biological spider, which has the ability to

navigate through different terrains, a spider robot is ideal for the application intended. It was

important to come up with a capable mechanical design for the robot so it can freely move

around and do the movements needed. The design required a dependable leg design, which had

the ability to move in all directions. In this design, safety is a very important thing to consider so

most of the robot frame is smooth and have no sharp edges. Also, the electrical parts are reusable

such as servos and the microcontroller to minimize the environmental effect this robot might

cause. Second, the software part is offering the logic for the spider. Offering the user an instant

move with no delay is great. The user is having a robot with a smooth movement and with a

good speed. A simple control system is needed to make it easy for the user to steer and control

the robot. An android app will be good enough to do that since everybody has a smartphone

nowadays. Also, considering consuming energy and draining the battery; the robot should last a

long time for it to be reliable. At the end, the robot should be straightforward and easy to

assemble when manufacturing. It should be easy to build when entering the production line.

Client requirements:

• The robot should have the ability to walk and rotates smoothly

• An android app is needed to steer the robot via Wi-Fi communication

• The robot must pass the rugged road simulated test

• Sleep mode to save the battery which was replaced with charging pins built it the PCB

III. Design

In order to get the robot going, the robot is attached with 6 legs and flat central panel on

its back (the spider body) which will contain the hardware. There are 18 servos to move the robot

in all directions like moving forward and backward, left and right as smooth as possible. The

robot is mostly RTOS, and Putty & Processing software is used to tune the PID of the servos in

real time to get a good result. Also, the robot has several modes. For example, attack mode in

which the robot will stand as high as possible, scared mode in which the robot looks scared and

will sit as low as possible to the ground, and a mode that will make the thorax stable in a flat

level when it is moving. Furthermore, a smartphone application was created to control the robot

using Wi-Fi communication. Using RTOS helped to interact with the robot in real time and get a

better PID tuning for the servos. That was to get rid of unwanted moves and the inertial that the

legs and the body might cause when moving around.

A. Hardware:

The hardware of the spider robot is consisted of two major parts, the electrical parts and

the Spider body panels. Below is the list of all electrical parts that been used.

The electronics part of the Spider robot consisted of these main parts:

• STM32F446RE

• Mini Maestro 18-Channel USB Servo Controller (Assembled)

• Customized PCB

• GY-85 Sensor Modules Accelerometer Gyroscope Module, 2.5mm Pin, ITG3205 +

ADXL345 + HMC5883L Chip

• Logic Level Converter

• YEP 20A HV (2~12S) SBEC w/Selectable Voltage Output

• Towerpro MG996r Servos Motors

• Node MCU version 3(ESP 8266)

• 5000mAh, 3 Cell 11.1V Lipo Battery

The STM32F446 is the main brain of the robot. It uses the ARM Cortex-M4 core to achieve

leading performance. The microprocessor has 180 MHz, 256-Kbyte to 512-Kbyte flash, and 128-

Kbyte SRAM [1]. The microcontroller is charged with controlling all the movements and

sending and receiving commands. Using nucleo board was great in such an application. Figure

1&2 below show the block diagram of all the connected parts:

Figure 1: Connections to STM

Figure 2: Power Connections

Along with that, a servo controller driver board been used which contains 18 channels to drive

all the servos. That was important in helping out managing the servos separately. The Maestro

Servo Controller board comes with its own processor to interact with the software that comes

with it. The figure 3 below shows the Servo Controller board and figure 4 shows the servos

connections to it.

Figure 4: Maestro Connection to Servos

Figure 3: Maestro Servo Controller board [2]

Towerpro MG996r servos been used which have good torque and speed with a dead band

width of 1us and it is accurate. There are a lot of counterfeited servo in the internet and they are

with a bad quality. The one was found were the originals but they are a little bit more expensive

compared to the counterfeited one. Also, YEB(Selectable Voltage Output) was used to reduce

the 11.1v from the battery to 6 v that goes to the servo driver board.

A PCB circuit was designed and ordered to eliminate the wiring and to avoid faulty

connections. I used Eagle Software to design it. It was designed to fit over the nuclro board, and

it is almost the same size as the nucleo board. That was done to reduce the size needed to place

all those parts. The PCB contains all major parts: Logic Level Converter, GY-85 Sensor Modules

Accelerometer Gyroscope Module, Wi-Fi ESP8266 Module. Also, it has couple of screw

terminals pins to connect YEB and the Maestro board to the PCB. The figure 5 and 6 below

show the circuit schematic of the PCB and the PCB itself before manufactured respectively.

Figure 5: Circuit Schematic

The spider body was designed in SolideWork Software. In this design, each leg has three

degree of freedom (x, y, z) so it can move in all directions. The figure 4 below shows the parts

needed for one leg. When the first leg came out the way intended for the purpose of this robot,

that was after editing it several times, 6 legs were printed. Figure 5 shows the parts for the main

body which carry all the electrical parts.

Figure 6: PCB layout

The spider body contain the main body and the legs. In this design there are 6 legs, and each leg

has 3 joint to allow the 3DOF. It has total of 18 servos. The robot used some bearing to allow

smooth movements and punch of screws and nuts to tighten the parts together. Figure 6 shows

the two plates that form the main body.

Figure 7: 3D one leg parts

Figure 8: 3D Main body parts

After using couple of bearing, screws, and nuts to tighten everything g together, the final

look is shown in figure 6.

Figure 9: Spider robot final look

B. Software:

The software of this robot consists of two major parts: the microcontroller logic and the

smartphone app. For the logic, the servo motors are controlled using Pulse width Modulation

(PWM) received from the microcontroller. The direction and position of the servos can be

controlled by varying the PWM signal. To do that, each servo is connected to the servo driver

board. First of all, the software will identify the 0 position and that is when each leg starts to

touch the ground.

That is to make the body level and have more stable movement. After that it will be ready

for the commands from the user to be steered and controlled. In figure 3 is a simple schematic of

the software process. The system will start with a switch, then it will wait for the user to send a

command. If there is a command, then the Wi-Fi module will process that command to the

microcontroller board. The board then will send a signal to the servo driver board. Then the

servo driver board will send the signal to the involved servos to make that movement and it will

run in loop.

Figure 10: Simple schematic

The gait chosen for this robot was simple 3 legs motion. For Forward, rotation and

backward motion the robot will move 3 legs up in the air and move rest in forward or reverse to

complete half cycle then in next phase the legs which were in the air comes down while the one

which were touching the ground will move up.

 Forward motion Example:

 Let the bot assembly be as follows:

Table 1: Legs numbers

1 2

3 4

5 6

For this let’s divide the gait on 7 cycles:

Cycle 1: leg 1 , 3 and 5 will move up.

Cycle 2: Leg 1, 3 and 5 will move forward.

Cycle 3: Leg 1, 3 and 5 will move down while leg 4, 6 and 2 will move up.

Cycle 4: Leg 1, 3 and 5 will move backward which will make bot move forward.

Cycle 5: Leg 4, 6 and 2 (which were in air) will move forward.

Cycle 6: Leg 4, 6 and 2 will move down while leg 1, 3 and 5 will move up.

Cycle 7: Leg 4, 6 and 2 will move backward which will make bot move forward.

Repetition of these 7 cycles will generate a whole walking pattern.

Servo motors are connected to Maestro servo board which communicated via serial

communication to the STM32Nucleo board. Serial commands were sent in specified orders to

control servo channels and target position of servos.

18 channel Polulu Maestro mini was used to control the servos. Serial protocol was used

to establish communication between Maestro and STM32Nucleo board.

Here are the values of the factory min and max of pulse width that can be given to each

servo which shown in table 2. And been used Excel to save and record those values. First was to

find the factory min and max to make sure that not to be exceeded. Second was tried to find the

range that each servo have and need for each leg individually for the available tolerance. Normal

position indicates when the robot will stand up in normal position.

Table 2: Servos values

Leg Servo Min Max Normal
position Factory Min Factory

Max

1
1 900 1700 1300 600 2300
2 700 2200 1500 600 2300
3 700 2200 1900 600 2300

2
1 1100 1700 1400 600 2300
2 700 2200 1500 600 2300
3 700 2200 1900 600 2300

3
1 1200 2100 1650 600 2300
2 700 2200 1500 600 2300
3 700 2200 1900 600 2300

4
1 700 1700 1200 600 2300
2 700 2200 1500 600 2300
3 700 2200 1900 600 2300

5
1 1250 1750 1500 600 2300
2 700 2200 1500 600 2300
3 700 2200 1900 600 2300

6
1 1200 2100 1650 600 2300
2 700 2200 1500 600 2300
3 700 2200 1900 600 2300

 Servo 1 = Attached to the plate
 Servo 2 = middle joint
 Servo 3 = last joint

After that, the values have been hard coded in the main function for further use. The

declaration in shown in the figure 11 below.

Following are some of the serial commands Maestro used for controlling attached servos:

SetTarget: function void setPos(uint8_t channel, uint16_t target) is the one used to send a servo

to specific target. Following are step and set commands:

1. 0x84 send via serial to specify that next serial values will determine channel number

and target position.

2. Next command will be to send channel number to Maestro e.g. 0x01 for channel

number 1.

Figure 11: Servos positions

3. Next two commands will determine the target position. It needs to send 14 bit data to

the Maestro. For example, if a servo needed to go to position 2000, then that position

will be multiplied by 4 and then split it into two 7 bit numbers. E.g. target = 2000 * 4

serialBytes[2] = target & 0x7F; //lsb

serialBytes[3] = (target >> 7) & 0x7F; //msb

SetMultiTarget: function void multiTarget() was used to give target position to all servos at

one.

1. 0x9F send via serial to specify that next serial values will determine multi target

positions.

2. Next command will send 7 bit number to specify total targets.

3. Next command will send 7 bit number to specify first target.

4. Next send consecutive target positions. For example, selecting 4 as total channels and

3 as first target then next 4 14 bit commands will specify the position of channel 3, 4,

5 and 6.

For the balance feature Gyroscope & Accelerometer Module been used which referred as

GY-85. GY-85 is an I2C module containing accelerometer, gyro and compass. Only

accelerometer been used to get reading of tilt in X and Y axis to stabilize/ balance the robot

periodically or before each control command.

As said above GY-85 has gyro, accelerometer and compass all in one module but only

accelerometer was used to determine the tilt of the robot and then balancing of the robot using

those values. The communication protocol used was I2C. This protocol requires only 2 lines

namely SCL and SDA to communicate between two devices. Each device has a unique address

which is used to alert the device for incoming and outgoing data. There is one master device and

there can be one or more than one slave devices. In this case, STM32Nucleo was master while

GY-85 was a slave device.

In the code there are two functions for the Accelerometer communication.

1. Void setupAcc() this function setup the accelerometer for reading value. It sends the

device address of 0xA6 and other initial values.

2. Void readAcc() after sending 0x32 to the accelerometer the master can read next 6 bytes

of data to determine tilt in x, y and z.

Also, for the balancing feature, it required using the values from accelerometer. The function

used was void stabilize() in this function it first get the values of x and y from accelerometer and

then if the values deviate from 0 a lot then depending on the values, it will move the femur of the

robot to counter the tilt. For Example: If the Y values are less than -20 then that means that front

of our bot is higher than the back so we either move femur of back legs down or move femur of

front legs up to counter the tilt.

 Smartphone application was created to give the ability to remote control the robot and to

steer it. For making the smartphone app, MIT AppInventor was used to design the app. MIT

AppInventor is an online tool that is simple, but it is capable of making professional app in the

same time. In figure 12 below is the app main page of the app where the user has two options.

Either hit start to start playing with the robot or help menu which contain information of how to

connect to the robot and what the features the robot has.

When pressing the start button, the app will go to the function page where are the features and

the functions available for the user. There are three functions as shown in figure 13

Figure 12: Smartphone App

Figure 13: Function menu

Functions are:

1. Say Hi: the leg chosen by the user will go up for 5 seconds and then it will go down.

2. Play option: The user can choose to play sit/stand where the robot will sit to the ground

and stand up. Or move option to steer the robot to move in all direction (Forward,

Backward, Left, Right)

3. Balance option: There is an Activate button that will balance the Spider main body to the

ground flat level (0 degree) when pressed. Whenever the user tries to play a move, the

balance option will be deactivated.

In each screen of the movements function there are arrows that determine the directions of where

the robot going to move to. The patter here is when a button is pressed and left the button, the

move will take place for that complete step. There was a possibility to design in a way that it

keeps moving along while the user finger is pressing that button, but it kept storing the incoming

message in the stream and it sometime move even when the finger is lifted

For communication between the app and the robot, Nodemcu (ESP8266 12E) was used to

get values from android app and send it to STM32Nucleo board via serial communication. It is a

low-cost chip that enables the user integrate Wi-Fi in the system and it uses SPI/UART

communication. It is shown in figure 14 below.

 Figure 14: NodeMCU (ESP8266) Wi-Fi module [3]

NodeMCU code had following setup and function:

1. Setup NodeMCU in access point mode so that Mobile phone can connect the Wi-Fi of

NodeMCU.

2. Make a TCP server on NodeMCU.

3. Android app will act as a client and will send different commands like Move forward,

rotate left etc. to the Nodemcu.

4. NodeMCU will then transmit those commands to STM32Nucleo board over serial

communication.

Along with that, Processing Software were used to tune the PID of the servos to get rid of

any unwanted movements (inertia, frictions …). Figure 4 is an example of the PID tuning. The

Processing software uses UART commands via virtual COM port to the Nucleo board. The

figures show the time-domain graphs of input and output values, input error, and separately

promotional, integral and differential components of output value. In figures 4 & 5 are examples

of the PID tuning of a dc motor. Notice the gap in figure 4 where the inertia effecting the motor,

and the final results in figure 5 where the motor is more accurate. There were not too much

tuning because luckily the servos are accurate.

Figure 15: Initial values Figure 16: Final values

C. Standards:

 While building this project, several considerations were taken onto account. In this

robot, safety is number one priority. The robot will have safety shut off in case of

overloading which will prevent any electric parts from burning. The body of the robot will

not have any sharp edges that might cause injury. All small parts will be tightened and

hidden away, that is to prevent children under 3 years old form swallow them. Moving to

manufacturability and sustainability, rebuilding the robot now is easier than before since all

weak points was known, and been left with best choice of any option that can be used. The

ability to manufacture is very high. The robot would require several specific parts which can

be put together to form the final robot. Also, the robot should last long due the material and

parts that will be built of. For sustainability, all servos and other components is with good

quality. The robot is last long before it stops and that is because of the way the robot is

designed. For health impact, since the robot is remote controlled, there is no need for human

to make direct contact with the robot which will prevent any injury the servos or legs

movements might cause.

IV. Cost

The project cost will be affordable. The only one thing that will have the major cost are

the servos, where each servo costs $6.95. There are much cheaper servos in the internet but those

won’t be efficient for this application of this robot because a servo with high torque and speed

were required. In the robot, 18 servos are required which makes it the costliest thing in this

project. Other items are fairly cheap and won’t cost too much.

Table 3: Cost

Description Quantity Unit price Price

Sparkfun Logic Level Converter - Bi
Directional

1 $2.95 $2.95

ESP8266 SMT Module 1 $6.95 $6.95

Screw Terminal 3.5 mm Pitch 3 $1.9 $5.70

XT-60 Male Connector 1 $1.5 $1.5

100uF Electrolytic Capacitor 1 $1.49 $1.49

10uF Ceramic Capacitor 1 $2.31 $2.31

Mini Maestro 18-Channel USB Servo
Controller

1 $39.95 $39.95

Customized PCB 1 $50 $50

GY-85 Sensor Modules Accelerometer
Gyroscope Module, 2.5mm Pin, ITG3205 +

ADXL345 + HMC5883L Chip

1 $18.66 $18.66

Turnigy 5000mAh 3S 11.1V 20C 30C Lipo
Battery XT60 RC Traxxas Car Truck Plane

US

1 $37.99 $37.99

YEP 20A HV (2~12S) SBEC w/Selectable
Voltage Output

1 $15.65 $15.65

Original TpwerPro MG996r Servos 18 $6.95 $124.2

10 pieces of 62R-2RS bearing 2 $9.99 $19.98

Bunch of M2x7mm , M2x10mm, M2x32mm,
M2x35mm, M2x40mm, M3x16mm,, M2-0.4

Hex, M2.5x6mm flat washer ≅ $35

 Total = $279.5 + $35 = $314.5

V. Results

This project is successfully satisfied the minimum client requirements. The android app is

steering the robot via Wi-Fi communication. The PID tuning of servos is well working, and the

robot is smoothly walking and rotating, and it is doing the required movements. The robot passed

the test of walking through rugged road. Also, the saving battery feature was replaced with

charging pins that is built in the PCB which is more efficient for having the voltage needed for

the robot when the battery near to drain out. It is ready for manufacturing with height end

materials.

References:

 [1] “STM32F446”. STM32. Web. 19 Nov. 2018.

https://www.st.com/en/microcontrollers/stm32f446.html?querycriteria=productId=LN1875

[2] “Servo controller driver board.” adafruit. Web. 19 Nov. 2018.

https://www.adafruit.com/product/1429?gclid=Cj0KCQiA28nfBRCDARIsANc5BFA9MIQk1lR
5b67V2hq0F3uAppjV-sZuoiG1pOXaDOElZV7JIlcy67AaAqwQEALw_wcB

[3] “Wifi module ESP-WROOM-32.” Mouser Electronics. Web. 19 Nov. 2018.

https://www.mouser.com/ProductDetail/Espressif-Systems/ESP32-WROOM-
32?qs=chTDxNqvsyltcwz%2FUUJDtQ%3D%3D&gclid=Cj0KCQiA28nfBRCDARIsANc5BFD
XvwVnRgCjtgVGw03gnIr0m2R4UiTIxjaKtrcMqSv2DUP456dkM7caAqlGEALw_wcB

https://www.mouser.com/ProductDetail/Espressif-Systems/ESP32-WROOM-32?qs=chTDxNqvsyltcwz%2FUUJDtQ%3D%3D&gclid=Cj0KCQiA28nfBRCDARIsANc5BFDXvwVnRgCjtgVGw03gnIr0m2R4UiTIxjaKtrcMqSv2DUP456dkM7caAqlGEALw_wcB
https://www.mouser.com/ProductDetail/Espressif-Systems/ESP32-WROOM-32?qs=chTDxNqvsyltcwz%2FUUJDtQ%3D%3D&gclid=Cj0KCQiA28nfBRCDARIsANc5BFDXvwVnRgCjtgVGw03gnIr0m2R4UiTIxjaKtrcMqSv2DUP456dkM7caAqlGEALw_wcB
https://www.mouser.com/ProductDetail/Espressif-Systems/ESP32-WROOM-32?qs=chTDxNqvsyltcwz%2FUUJDtQ%3D%3D&gclid=Cj0KCQiA28nfBRCDARIsANc5BFDXvwVnRgCjtgVGw03gnIr0m2R4UiTIxjaKtrcMqSv2DUP456dkM7caAqlGEALw_wcB

Appendix:

#include "main.h"
#include "i2c.h"
#include "usart.h"
#include "gpio.h"

// servo channels
#define AC 0
#define AF 1
#define AT 2
#define BC 3
#define BF 4
#define BT 5
#define CC 6
#define CF 7
#define CT 8
#define DC 9
#define DF 10
#define DT 11
#define EC 12
#define EF 13
#define ET 14
#define FC 15
#define FF 16
#define FT 17

//servo normal positions
#define ACN 1300 //MIN 900 MAX 1700
#define AFN 1500 //MIN 700 MAX 2200
#define ATN 1900 //MIN 700 MAX 2200
#define BCN 1400 //MIN 1100 MAX 1700
#define BFN 1500 //MIN 700 MAX 2200
#define BTN 1900 //MIN 700 MAX 2200
#define CCN 1650 //MIN 1200 MAX 2100
#define CFN 1500 //MIN 700 MAX 2200
#define CTN 1900 //MIN 700 MAX 2200
#define DCN 1200 //MIN 700 MAX 1700
#define DFN 1500 //MIN 700 MAX 2200
#define DTN 1900 //MIN 700 MAX 2200
#define ECN 1500 //MIN 1250 MAX 1750
#define EFN 1500 //MIN 700 MAX 2200
#define ETN 1900 //MIN 700 MAX 2200
#define FCN 1650 //MIN 1200 MAX 2100
#define FFN 1500 //MIN 700 MAX 2200
#define FTN 2000 //MIN 700 MAX 2200

//Speed Variables
#define fwdStepsC 300 //300
#define upStepsF 400 //200 //500
#define upStepsT -200 //-100 //-200
#define bwdStepsC -300 //-200 //-300
#define downStepsF -300 //-200 //-300
#define downStepsT 100 //100 //100

void SystemClock_Config(void);

void stablize();
void setPos(uint8_t, uint16_t); // This Functions send 14 bit
data to maestro arguments are (channel, target Pos)
void walkFwd(); //Bot Will complete one gait cycle of forward
motion
void d2Down(); //Femer and tibia of LEG F, d and B will move to
normal position
void d2Up(); //Femer of LEG F, D and B will move to upward
upStepsF and tibia to upStepsT from normal position
void d1Down(); //Femer and tibia of LEG A, C and E will move to
normal position
void d1Up(); //Femer of LEG A, C and E will move to upward
upStepsF and tibia to upStepsT from normal position
void d1Fwd(); //Coxa of LEG A, C and E will move
fwdStepsC forward from normal postion
void d2Fwd(); //Coxa of LEG B, F and D will move
fwdStepsC forward from normal postion
void d1NC(); //Cox of LEG A, C and E will move to normal
position
void d2NC(); //Cox of LEG F, D and B will move to normal
position

void d1Normal(); //Coxa, Femer and Tibia of Legs A, C and E
will move to normal positions
void d2Normal(); //Coxa, Femer and Tibia of Legs B, D and F
will move to normal positions
void testCode(); // NONE
void rotateRight(); //Bot Will complete one gait cycle of right
rotation
void rotateLeft(); //Bot Will complete one gait cycle of left
rotation

void d1RR(); //Coxa of Legs A and C will move backwards by
"fwdStepsC" and E will move forwards by "fwdStepsC" from normal
postion
void d2RR(); //Coxa of Legs F and D will move forward by
"fwdStepsC" and B will move backwards by "fwdStepsC" from
normal postion
void d1RL(); //Coxa of Legs A and D will move forward by
"fwdStepsC" and E will move backwards by "fwdStepsC" from
normal postion
void d2RL(); //Coxa of Legs F and D will move backward by
"fwdStepsC" and B will move forward by "fwdStepsC" from normal
postion

void walkRev(); //Caution Not working properly //Bot Will
complete one gait cycle of right rotation
void d1Back(); //Coxa of LEG A, C and E will move fwdStepsC
backward from normal postion
void d2Back(); //Coxa of LEG B, F and D will move fwdStepsC
backward from normal postion
void walkRevG2(); //Caution: Not working properly //Bot Will
complete one gait cycle of right rotation
void walkRevG3(); //Caution: Not working properly //Bot Will
complete one gait cycle of right rotation
void sitDown(); //Caution: Not working properly //Bot will
sitdown from normal postion
void standUp(); //Caution: Not working properly //Bot will
standUP from sitDown Position
void standUpV2(); //Caution: Not working properly //Bot will
standUP from sitDown Position
void standUpPrep(); //Caution: Not working properly //Bot will
take standUP stance from sitDown Position
void standUpV3(); //Caution: Not working properly //Bot will
standUP from sitDown Position

void leg1Play(); //Femer and Tibia of described leg will move
up by upStepsF and upStepsT from normal position respectively
void leg2Play(); //Femer and Tibia of described leg will move
up by upStepsF and upStepsT from normal position respectively
void leg3Play(); //Femer and Tibia of described leg will move
up by upStepsF and upStepsT from normal position respectively
void leg4Play(); //Femer and Tibia of described leg will move
up by upStepsF and upStepsT from normal position respectively
void leg5Play(); //Femer and Tibia of described leg will move
up by upStepsF and upStepsT from normal position respectively

void leg6Play(); //Femer and Tibia of described leg will move
up by upStepsF and upStepsT from normal position respectively
void write14Bit(uint16_t); //Send 14Bit Value over I2C to
Maestro // used it for MultiTargetfunction
void multiTarget(); //Send Target position to multiple servos at
once// tried to use it for standUp function
uint8_t getMovState(); //Caution: Not Working //tried to get
servo position from maestro.
void fullNormal();
void readAcc(); //Read values of Accelerometer
void setAcc(); //Ready the accelerometer
static float acc_x=0; //x Axis value of accelerometer
static float acc_y=0; //y Axis value of accelerometer
static float acc_z=0; //z Axis value of accelerometer
uint8_t i2cData[2]={0,0}; //used for I2C data transfer

int main(void)
{

 HAL_Init();

 SystemClock_Config();

 MX_GPIO_Init();
 MX_USART2_UART_Init();
 MX_USART1_UART_Init();
 MX_USART3_UART_Init();
 MX_I2C1_Init();

 uint8_t serialBytes[4];
 d1Normal();
 HAL_Delay(2000);
 d2Normal();
 HAL_Delay(2000);
 uint8_t serialCont [1];
 while (1)
 {

 HAL_UART_Receive(&huart3, &serialCont[0], 1, 100);
 HAL_Delay(200);

 if (serialCont[0] == 48){
 fullNormal();
 HAL_GPIO_TogglePin(GPIOA, GPIO_PIN_5);
 walkFwd();

 serialCont[0]=0;
 }
 else if (serialCont[0] == 49){
 fullNormal();
 walkRev();
 HAL_GPIO_TogglePin(GPIOA, GPIO_PIN_5);
 serialCont[0]=0;
 }
 else if (serialCont[0] == 50){
 fullNormal();
 rotateLeft();
 HAL_GPIO_TogglePin(GPIOA, GPIO_PIN_5);
 serialCont[0]=0;
 }
 else if (serialCont[0] == 51){
 fullNormal();
 rotateRight();
 HAL_GPIO_TogglePin(GPIOA, GPIO_PIN_5);
 serialCont[0]=0;
 }
 else if (serialCont[0] == 52){
 fullNormal();
 leg1Play();
 HAL_GPIO_TogglePin(GPIOA, GPIO_PIN_5);
 serialCont[0]=0;
 }
 else if (serialCont[0] == 53){
 fullNormal();
 leg2Play();
 HAL_GPIO_TogglePin(GPIOA, GPIO_PIN_5);
 serialCont[0]=0;
 }
 else if (serialCont[0] == 54){
 fullNormal();
 leg3Play();
 HAL_GPIO_TogglePin(GPIOA, GPIO_PIN_5);
 serialCont[0]=0;
 }
 else if (serialCont[0] == 55){
 fullNormal();
 leg4Play();
 HAL_GPIO_TogglePin(GPIOA, GPIO_PIN_5);
 serialCont[0]=0;
 }
 else if (serialCont[0] == 56){
 fullNormal();
 leg5Play();

 HAL_GPIO_TogglePin(GPIOA, GPIO_PIN_5);
 serialCont[0]=0;
 }
 else if (serialCont[0] == 57){
 fullNormal();
 leg6Play();
 HAL_GPIO_TogglePin(GPIOA, GPIO_PIN_5);
 serialCont[0]=0;
 }
 else if (serialCont[0] == 58){
 fullNormal();
 stablize();
 HAL_GPIO_TogglePin(GPIOA, GPIO_PIN_5);
 serialCont[0]=0;

 }
 else if (serialCont[0] == 59){
 fullNormal();
 sitDown();
 HAL_GPIO_TogglePin(GPIOA, GPIO_PIN_5);
 serialCont[0]=0;
 }
 else if (serialCont[0] == 60){
 fullNormal();
 standUp();
 HAL_GPIO_TogglePin(GPIOA, GPIO_PIN_5);

 serialCont[0]=0;
 }
 }

}

void SystemClock_Config(void)
{
 RCC_OscInitTypeDef RCC_OscInitStruct = {0};
 RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};

 __HAL_RCC_PWR_CLK_ENABLE();
 __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE3);
 /**Initializes the CPU, AHB and APB busses clocks
 */
 RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
 RCC_OscInitStruct.HSIState = RCC_HSI_ON;

 RCC_OscInitStruct.HSICalibrationValue =
RCC_HSICALIBRATION_DEFAULT;
 RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
 RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI;
 RCC_OscInitStruct.PLL.PLLM = 16;
 RCC_OscInitStruct.PLL.PLLN = 336;
 RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV4;
 RCC_OscInitStruct.PLL.PLLQ = 2;
 RCC_OscInitStruct.PLL.PLLR = 2;
 if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
 {
 Error_Handler();
 }
 /**Initializes the CPU, AHB and APB busses clocks
 */
 RCC_ClkInitStruct.ClockType =
RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK

|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
 RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
 RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
 RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
 RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;

 if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2)
!= HAL_OK)
 {
 Error_Handler();
 }
}

/* USER CODE BEGIN 4 */

void fullNormal(){
 d1Normal();
 HAL_Delay(200);
 d2Normal();
 HAL_Delay(200);
}
int getPos(uint8_t channel){

 uint8_t serialBytes [4];
 serialBytes[0] = 0x90;
 serialBytes[1] = channel;
 HAL_UART_Transmit(&huart1, &serialBytes[0], 1, 1000);
 //HAL_Delay(20);

 HAL_UART_Transmit(&huart1, &serialBytes[1], 1, 1000);
 HAL_UART_Receive(&huart1, &serialBytes[0], 1, 1000);
 HAL_UART_Receive(&huart1, &serialBytes[1], 1, 1000);
 return ((serialBytes[0] << 8) | (serialBytes[1] & 0xFF));
 //HAL_Delay(20);
}

uint8_t getMovState(){

 uint8_t serialBytes [4];
 serialBytes[0] = 0x93;
 HAL_UART_Transmit(&huart1, &serialBytes[0], 1, 1000);

 HAL_UART_Receive(&huart1, &serialBytes[0], 1, 1000);

 return serialBytes[0];
 //HAL_Delay(20);
}
void write14Bit(uint16_t target){
 target=target *4;
 uint8_t serialBytes [4];
 serialBytes[2] = target & 0x7F; //lsb
 serialBytes[3] = (target >> 7) & 0x7F;//msb
 HAL_UART_Transmit(&huart1, &serialBytes[2], 1, 1000);
 //HAL_Delay(20);
 HAL_UART_Transmit(&huart1, &serialBytes[3], 1, 1000);
 //HAL_Delay(20);
}
void setPos(uint8_t channel, uint16_t target){
 target=target *4;
 uint8_t serialBytes [4];
 serialBytes[0] = 0x84;
 serialBytes[1] = channel;
 serialBytes[2] = target & 0x7F; //lsb
 serialBytes[3] = (target >> 7) & 0x7F;//msb
 HAL_UART_Transmit(&huart1, &serialBytes[0], 1, 1000);
 //HAL_Delay(20);
 HAL_UART_Transmit(&huart1, &serialBytes[1], 1, 1000);
 //HAL_Delay(20);
 HAL_UART_Transmit(&huart1, &serialBytes[2], 1, 1000);
 //HAL_Delay(20);
 HAL_UART_Transmit(&huart1, &serialBytes[3], 1, 1000);
 //HAL_Delay(20);
}

/* A F

 B E
 C D */

uint16_t smallDelay =50; //100
uint16_t bigDelay = 100; //300
void stablize(){
 int CFS= CFN; int DFS = DFN; int AFS =AFN; int FFS=FFN;
 setAcc();
 readAcc();
 while (acc_x >5 || acc_x<=-5 || acc_y >5 || acc_y <= -5){
 readAcc();
 if (acc_x <-5 && acc_y <-5){
 if (DFS -10 > 700)
 DFS=DFS-10;
 if (AFS +10 < 2200)
 AFS=AFS+10;
 if (DFS -10 < 700 && AFS +10 > 2200)
 break;
 setPos(DF, DFS);
 HAL_Delay(smallDelay);
 setPos(AF, AFS);
 HAL_Delay(smallDelay);
 }
 else if (acc_x >5 && acc_y<-5){
 if (CFS -10 > 700)
 CFS=CFS-10;
 if (FFS +10 < 2200)
 FFS=FFS+10;
 if (CFS -10 < 700 && FFS +10 > 2200)
 break;
 setPos(CF, CFS);
 HAL_Delay(smallDelay);
 setPos(FF, FFS);
 HAL_Delay(smallDelay);
 }
 else
 break;
 }
}
void walkFwd(){
 d1Up();
 d1Fwd();

 d1Down();
 d2Up();

 d1NC();
 d2Fwd();

 d2Down();
 d1Up();

 d2NC();
 d1Down(); //
 //d1Fwd();
}

void walkRev(){
 d1Up();
 d1Back();

 d1Down();
 d2Up();

 d1NC();
 d2Back();

 d2Down();
 d1Up();

 d2NC();
 d1Down();//
 //d1Back();
}

void rotateLeft (){
 d1Up();
 d1RL();

 d1Down();
 d2Up();

 d1NC();
 d2RL();

 d2Down();
 d1Up();

 d2NC();
 d1Down();//
 //d1RL();
}

void rotateRight (){
 d1Up();
 d1RR();

 d1Down();
 d2Up();

 d1NC();
 d2RR();

 d2Down();
 d1Up();

 d2NC();
 d1Down();//
 //d1RR();
}

void d2Down(){
 setPos(BF, BFN); //LEG B DOWN
 HAL_Delay(smallDelay);
 setPos(BT, BTN);
 HAL_Delay(smallDelay);
 setPos(DF, DFN); //LEG D DOWN
 HAL_Delay(smallDelay);
 setPos(DT, DTN);
 HAL_Delay(smallDelay);
 setPos(FF, FFN); //LEG F DOWN
 HAL_Delay(smallDelay);
 setPos(FT, FTN);
 HAL_Delay(smallDelay);
}

void d2Up(){
 setPos(FF, FFN+upStepsF); //LEG F UP
 HAL_Delay(smallDelay);
 setPos(FT, FTN+upStepsT);
 HAL_Delay(smallDelay);
 setPos(DF, DFN+upStepsF); //LEG D UP
 HAL_Delay(smallDelay);
 setPos(DT, DTN+upStepsT);
 HAL_Delay(smallDelay);
 setPos(BF, BFN+upStepsF); //LEG B UP
 HAL_Delay(smallDelay);
 setPos(BT, BTN+upStepsT);
 HAL_Delay(smallDelay);

}

void d1Up(){
 //LEG A UP
 setPos(AF, AFN + upStepsF);
 HAL_Delay(smallDelay);
 setPos(AT, ATN + upStepsT);
 HAL_Delay(smallDelay);
 //LEG C UP
 setPos(CF, CFN + upStepsF);
 HAL_Delay(smallDelay);
 setPos(CT, CTN + upStepsT);
 HAL_Delay(smallDelay);
 //LEG E UP
 setPos(EF, EFN + upStepsF);
 HAL_Delay(smallDelay);
 setPos(ET, ETN + upStepsT);
 HAL_Delay(smallDelay);
}

void d1Down(){
 setPos(AF, AFN); //LEG A DOWN
 HAL_Delay (smallDelay);
 setPos(AT, ATN);
 HAL_Delay(smallDelay);
 setPos(CF, CFN); //LEG C DOWN
 HAL_Delay(smallDelay);
 setPos(CT, CTN);
 HAL_Delay(smallDelay);
 setPos(EF, EFN); //LEG E DOWN
 HAL_Delay(smallDelay);
 setPos(ET, ETN);
 HAL_Delay(smallDelay);

}

void d1Fwd(){
 setPos(AC, ACN+fwdStepsC); //LEG A FWD
 HAL_Delay(bigDelay);
 setPos(CC, CCN+fwdStepsC); //LEG C FWD
 HAL_Delay(bigDelay);
 setPos(EC, ECN-fwdStepsC); //LEG E FWD
 HAL_Delay(bigDelay);
}

void d1Back(){
 setPos(AC, ACN-fwdStepsC); //LEG A FWD
 HAL_Delay(bigDelay);
 setPos(CC, CCN-fwdStepsC); //LEG C FWD
 HAL_Delay(bigDelay);
 setPos(EC, ECN+fwdStepsC); //LEG E FWD
 HAL_Delay(bigDelay);
}

void d1RL(){
 setPos(AC, ACN+fwdStepsC); //LEG A FWD
 HAL_Delay(bigDelay);
 setPos(CC, CCN+fwdStepsC); //LEG C FWD
 HAL_Delay(bigDelay);
 setPos(EC, ECN+fwdStepsC); //LEG E FWD
 HAL_Delay(bigDelay);
}

void d1RR(){
 setPos(AC, ACN-fwdStepsC); //LEG A FWD
 HAL_Delay(bigDelay);
 setPos(CC, CCN-fwdStepsC); //LEG C FWD
 HAL_Delay(bigDelay);
 setPos(EC, ECN-fwdStepsC); //LEG E FWD
 HAL_Delay(bigDelay);
}

void d2Fwd(){
 setPos(DC, DCN-fwdStepsC); //LEG D FWD
 HAL_Delay(bigDelay);
 setPos(FC, FCN-fwdStepsC); //LEG F FWD
 HAL_Delay(bigDelay);
 setPos(BC, BCN+fwdStepsC); //LEG B FWD
 HAL_Delay(bigDelay);
}

void d2Back(){
 setPos(DC, DCN+fwdStepsC); //LEG D FWD
 HAL_Delay(bigDelay);
 setPos(FC, FCN+fwdStepsC); //LEG F FWD
 HAL_Delay(bigDelay);
 setPos(BC, BCN-fwdStepsC); //LEG B FWD
 HAL_Delay(bigDelay);
}

void d2RL(){
 setPos(DC, DCN+fwdStepsC); //LEG D FWD
 HAL_Delay(bigDelay);
 setPos(FC, FCN+fwdStepsC); //LEG F FWD
 HAL_Delay(bigDelay);
 setPos(BC, BCN+fwdStepsC); //LEG B FWD
 HAL_Delay(bigDelay);
}

void d2RR(){
 setPos(DC, DCN-fwdStepsC); //LEG D FWD
 HAL_Delay(bigDelay);
 setPos(FC, FCN-fwdStepsC); //LEG F FWD
 HAL_Delay(bigDelay);
 setPos(BC, BCN-fwdStepsC); //LEG B FWD
 HAL_Delay(bigDelay);
}
void d1NC(){
 setPos(AC, ACN); //LEG A NEU
 HAL_Delay(bigDelay);
 setPos(CC, CCN); //LEG C NEU
 HAL_Delay(bigDelay);
 setPos(EC, ECN); //LEG E NEU
 HAL_Delay(bigDelay);
}

void d2NC(){
 setPos(DC, DCN); //LEG D NEU
 HAL_Delay(bigDelay);
 setPos(FC, FCN); //LEG F NEU
 HAL_Delay(bigDelay);
 setPos(BC, BCN); //LEG B NEU
 HAL_Delay(bigDelay);
}

void d1Normal(){
 setPos(AC, ACN); //LEG A NEU
 HAL_Delay(bigDelay);
 setPos(CC, CCN); //LEG C NEU
 HAL_Delay(bigDelay);
 setPos(EC, ECN); //LEG E NEU
 HAL_Delay(bigDelay);
 setPos(AF, AFN);
 HAL_Delay(bigDelay);
 setPos(CF, CFN);
 HAL_Delay(bigDelay);
 setPos(EF, EFN);

 HAL_Delay(bigDelay);
 setPos(AT, ATN);
 HAL_Delay(bigDelay);
 setPos(CT, CTN);
 HAL_Delay(bigDelay);
 setPos(ET, ETN);
 HAL_Delay(bigDelay);
}

void d2Normal(){
 setPos(FC, FCN);
 HAL_Delay(bigDelay);
 setPos(DC, DCN);
 HAL_Delay(bigDelay);
 setPos(BC, BCN);
 HAL_Delay(bigDelay);
 setPos(FF, FFN);
 HAL_Delay(bigDelay);
 setPos(DF, DFN);
 HAL_Delay(bigDelay);
 setPos(BF, BFN);
 HAL_Delay(bigDelay);
 setPos(FT, FTN);
 HAL_Delay(bigDelay);
 setPos(DT, DTN);
 HAL_Delay(bigDelay);
 setPos(BT, BTN);
 HAL_Delay(bigDelay);
}

void walkRevG2(){

 //LEG1
 setPos(AF, AFN + upStepsF);
 HAL_Delay(smallDelay);
 setPos(AT, ATN + upStepsT);
 HAL_Delay(smallDelay);
 setPos(AC, ACN-fwdStepsC);
 HAL_Delay(bigDelay);
 setPos(AF, AFN); //LEG A DOWN
 HAL_Delay (smallDelay);
 setPos(AT, ATN);
 HAL_Delay(smallDelay);

 //LEG6
 setPos(FF, FFN+upStepsF); //LEG F UP

 HAL_Delay(smallDelay);
 setPos(FT, FTN+upStepsT);
 HAL_Delay(smallDelay);
 setPos(FC, FCN+fwdStepsC); //LEG F FWD
 HAL_Delay(bigDelay);
 setPos(FF, FFN); //LEG F DOWN
 HAL_Delay(smallDelay);
 setPos(FT, FTN);
 HAL_Delay(smallDelay);

 //LEG5
 setPos(EF, EFN + upStepsF);
 HAL_Delay(smallDelay);
 setPos(ET, ETN + upStepsT);
 HAL_Delay(smallDelay);
 setPos(EC, ECN+fwdStepsC);
 HAL_Delay(bigDelay);
 setPos(EF, EFN); //LEG E DOWN
 HAL_Delay(smallDelay);
 setPos(ET, ETN);
 HAL_Delay(smallDelay);

 //LEG2
 setPos(BF, BFN+upStepsF);
 HAL_Delay(smallDelay);
 setPos(BT, BTN+upStepsT);
 HAL_Delay(smallDelay);
 setPos(BC, BCN-fwdStepsC);
 HAL_Delay(bigDelay);
 setPos(BF, BFN);
 HAL_Delay(smallDelay);
 setPos(BT, BTN);
 HAL_Delay(smallDelay);

 //LEG3
 setPos(CF, CFN + upStepsF);
 HAL_Delay(smallDelay);
 setPos(CT, CTN + upStepsT);
 HAL_Delay(smallDelay);
 setPos(CC, CCN-fwdStepsC);
 HAL_Delay(bigDelay);
 setPos(CF, CFN); //LEG C DOWN
 HAL_Delay(smallDelay);
 setPos(CT, CTN);
 HAL_Delay(smallDelay);

 //LEG4
 setPos(DF, DFN + upStepsF);
 HAL_Delay(smallDelay);
 setPos(DT, DTN + upStepsT);
 HAL_Delay(smallDelay);
 setPos(DC, DCN+fwdStepsC);
 HAL_Delay(bigDelay);
 setPos(DF, DFN); //LEG D DOWN
 HAL_Delay(smallDelay);
 setPos(DT, DTN);
 HAL_Delay(smallDelay);

 setPos(AC, ACN);
 HAL_Delay(bigDelay);
 setPos(BC, BCN);
 HAL_Delay(bigDelay);
 setPos(CC, CCN);
 HAL_Delay(bigDelay);
 setPos(DC, DCN);
 HAL_Delay(bigDelay);
 setPos(EC, ECN);
 HAL_Delay(bigDelay);
 setPos(FC, FCN);
 HAL_Delay(bigDelay);

}

void walkRevG3(){

 //LEG6
 setPos(FF, FFN+upStepsF); //LEG F UP
 HAL_Delay(smallDelay);
 setPos(FT, FTN+upStepsT);
 HAL_Delay(smallDelay);
 setPos(FC, FCN+fwdStepsC); //LEG F FWD
 HAL_Delay(bigDelay);
 setPos(FF, FFN); //LEG F DOWN
 HAL_Delay(smallDelay);
 setPos(FT, FTN);
 HAL_Delay(smallDelay);

 //LEG1
 setPos(AF, AFN + upStepsF);
 HAL_Delay(smallDelay);

 setPos(AT, ATN + upStepsT);
 HAL_Delay(smallDelay);
 setPos(AC, ACN- fwdStepsC);
 HAL_Delay(bigDelay);
 setPos(AF, AFN); //LEG A DOWN
 HAL_Delay (smallDelay);
 setPos(AT, ATN);
 HAL_Delay(smallDelay);

 setPos(AC, ACN);
 HAL_Delay(bigDelay);
 setPos(FC, FCN);
 HAL_Delay(bigDelay);

}
void sitDownV2(){
 int afsd=AFN; int bfsd=BFN; int cfsd=CFN;
 int dfsd=DFN; int efsd=EFN; int ffsd=FFN;

 while (1){
 if (afsd == 1950 && bfsd ==2050 && cfsd==2050 && dfsd
==2100 && efsd ==2100 && ffsd ==2100)
 break;
 if(afsd +1 <1950)
 afsd =afsd +1;
 if (bfsd + 1 < 2050)
 bfsd = bfsd +1;
 if (cfsd + 1 < 2050)
 cfsd = cfsd +1;
 if (dfsd + 1 < 2100)
 dfsd = dfsd +1;
 if (efsd + 1 < 2100)
 efsd = efsd +1;
 if (ffsd + 1 < 2100)
 ffsd = ffsd +1;
 setPos(AF, afsd); //LEG A DOWN
 HAL_Delay(20);
 setPos(EF, efsd); //LEG E DOWN
 HAL_Delay(20);
 setPos(DF, dfsd); //LEG D DOWN
 HAL_Delay(20);
 setPos(BF, bfsd); //LEG B DOWN
 HAL_Delay(20);
 setPos(CF, cfsd); //LEG C DOWN
 HAL_Delay(20);
 setPos(FF, ffsd); //LEG F DOWN

 HAL_Delay(20);
 }

 setPos(AT, 2200); HAL_Delay(smallDelay);
 setPos(BT, 2200); HAL_Delay(smallDelay);
 setPos(CT, 2200); HAL_Delay(smallDelay);
 setPos(DT, 2200); HAL_Delay(smallDelay);
 setPos(ET, 2200); HAL_Delay(smallDelay);
 setPos(FT, 2200); HAL_Delay(smallDelay);
}
void sitDown(){

 setPos(AF, 1950); //LEG A DOWN
 HAL_Delay (bigDelay);
 setPos(EF, 2100); //LEG E DOWN
 HAL_Delay(bigDelay);
 setPos(DF, 2100); //LEG D DOWN
 HAL_Delay(bigDelay);
 setPos(BF, 2050); //LEG B DOWN
 HAL_Delay(bigDelay);
 setPos(CF, 2050); //LEG C DOWN
 HAL_Delay(bigDelay);
 setPos(FF, 2100); //LEG F DOWN
 HAL_Delay(bigDelay);

 setPos(AT, 2200); HAL_Delay(smallDelay);
 setPos(BT, 2200); HAL_Delay(smallDelay);
 setPos(CT, 2200); HAL_Delay(smallDelay);
 setPos(DT, 2200); HAL_Delay(smallDelay);
 setPos(ET, 2200); HAL_Delay(smallDelay);
 setPos(FT, 2200); HAL_Delay(smallDelay);
}

void standUpV2(){

 int afsd=AFN; int bfsd=BFN; int cfsd=CFN;
 int dfsd=DFN; int efsd=EFN; int ffsd=FFN;

 setPos(AT, ATN); HAL_Delay(smallDelay);
 setPos(BT, BTN); HAL_Delay(smallDelay);
 setPos(CT, CTN); HAL_Delay(smallDelay);
 setPos(DT, DTN); HAL_Delay(smallDelay);
 setPos(ET, ETN); HAL_Delay(smallDelay);
 setPos(FT, FTN); HAL_Delay(smallDelay);

 while (1){

 if (afsd >= AFN && bfsd >= BFN && cfsd>= CFN && dfsd >= DFN
&& efsd >= EFN && ffsd >=FFN){
 setPos(AF, AFN); //LEG A DOWN
 HAL_Delay(20);
 setPos(EF, EFN); //LEG E DOWN
 HAL_Delay(20);
 setPos(DF, DFN); //LEG D DOWN
 HAL_Delay(20);
 setPos(BF, BFN); //LEG B DOWN
 HAL_Delay(20);
 setPos(CF, CFN); //LEG C DOWN
 HAL_Delay(20);
 setPos(FF, FFN); //LEG F DOWN
 HAL_Delay(20);
 break;
 }

 if(afsd + 20 <AFN)
 afsd =afsd +20;
 if (bfsd + 20 < BFN)
 bfsd = bfsd +20;
 if (cfsd + 20 < CFN)
 cfsd = cfsd +20;
 if (dfsd + 20 < DFN)
 dfsd = dfsd +20;
 if (efsd + 20 < EFN)
 efsd = efsd +20;
 if (ffsd + 20 < FFN)
 ffsd = ffsd +20;

 setPos(AF, afsd);
 HAL_Delay(20);
 setPos(EF, efsd);
 HAL_Delay(20);
 setPos(DF, dfsd);
 HAL_Delay(20);
 setPos(BF, bfsd);
 HAL_Delay(20);
 setPos(CF, cfsd);
 HAL_Delay(20);
 setPos(FF, ffsd);
 HAL_Delay(20);
 }

}
void standUpV3(){
 uint8_t serialBytes [4];

 serialBytes[0] = 0x9f;
 serialBytes[2] = 0x12 & 0x7F; //lsb
 serialBytes[3] = 0x00 & 0x7F;
 HAL_UART_Transmit(&huart1, &serialBytes[0], 1, 1000);
 //HAL_Delay(20);
 HAL_UART_Transmit(&huart1, &serialBytes[2], 1, 1000);
 //HAL_Delay(20);
 HAL_UART_Transmit(&huart1, &serialBytes[3], 1, 1000);
 //HAL_Delay(20);
 write14Bit(ACN); write14Bit(AFN); write14Bit(ATN);
 write14Bit(BCN); write14Bit(BFN); write14Bit(FTN);
 write14Bit(CCN); write14Bit(CFN); write14Bit(CTN);
 write14Bit(DCN); write14Bit(DFN); write14Bit(DTN);
 write14Bit(ECN); write14Bit(EFN); write14Bit(ETN);
 write14Bit(FCN); write14Bit(FFN); write14Bit(FTN);
}
void standUpPrep(){
 int delaytemp = 500;
 setPos(AT, 2200); HAL_Delay(delaytemp);
 setPos(BT, 2200); HAL_Delay(delaytemp);
 setPos(CT, 2200); HAL_Delay(delaytemp);
 setPos(DT, 2200); HAL_Delay(delaytemp);
 setPos(ET, 2200); HAL_Delay(delaytemp);
 setPos(FT, 2200); HAL_Delay(delaytemp);

 setPos(AF, 2050); HAL_Delay(delaytemp);
 setPos(BF, 2100); HAL_Delay(delaytemp);
 setPos(CF, 2100); HAL_Delay(delaytemp);
 setPos(DF, 2100); HAL_Delay(delaytemp);
 setPos(EF, 2100); HAL_Delay(delaytemp);
 setPos(FF, 2100); HAL_Delay(delaytemp);
}
void standUp(){

 int smallDelay = 200;
 setPos(AT, ATN); HAL_Delay(smallDelay);
 setPos(BT, BTN); HAL_Delay(smallDelay);
 setPos(CT, CTN); HAL_Delay(smallDelay);
 setPos(DT, DTN); HAL_Delay(smallDelay);
 setPos(ET, ETN); HAL_Delay(smallDelay);
 setPos(FT, FTN); HAL_Delay(smallDelay);

 setPos(AF, AFN); //LEG A DOWN
 HAL_Delay (smallDelay);
 setPos(FF, FFN); //LEG F DOWN
 HAL_Delay(smallDelay);
 setPos(EF, EFN); //LEG E DOWN

 HAL_Delay(smallDelay);
 setPos(BF, BFN); //LEG B DOWN
 HAL_Delay(smallDelay);
 setPos(CF, CFN); //LEG C DOWN
 HAL_Delay(smallDelay);
 setPos(DF, DFN); //LEG D DOWN
 HAL_Delay(smallDelay);

}

void setAcc(){
 i2cData[0]=0x31; // G_PWR_MGM
 i2cData[1]=0x01;
 HAL_I2C_Master_Transmit(&hi2c1, 0xA6, i2cData, 2, 10);
 i2cData[0]=0x2D; //G_SMPLRT_DIV
 i2cData[1]=0x08;
 HAL_I2C_Master_Transmit(&hi2c1, 0xA6, i2cData, 2, 10);
 HAL_Delay(10);
}
void readAcc(){
 static int axis[3];
 uint8_t buff[6];
 i2cData[0]=0x32;
 HAL_I2C_Master_Transmit(&hi2c1, 0xA6, i2cData, 1, 50);
 HAL_Delay(10);
 //HAL_I2C_Master_Sequential_Receive_IT(&hi2c1, 0xD0, buff,
8, 100);
 HAL_I2C_Master_Receive(&hi2c1, 0xA6, buff, 6, 100);
 HAL_Delay(100);

 axis[0] = (((uint8_t)buff[1] << 8) | (uint8_t)buff[0]) ;
 axis[1] = (((uint8_t)buff[3] << 8) | (uint8_t)buff[2]) ;
 axis[2] = (((uint8_t)buff[5] << 8) | (uint8_t)buff[4]) ;

 acc_x= axis[0];
 acc_y= axis[1];
 acc_z= axis[2];
 if(acc_x > 255)
 acc_x=acc_x-65536;
 if(acc_y > 255)
 acc_y=acc_y-65536;
 if(acc_z > 255)
 acc_z=acc_z-65536;
}

void multiTarget(){
 uint8_t serialBytes [4];
 serialBytes[0] = 0x9f;
 serialBytes[2] = 0x12 & 0x7F; //lsb
 serialBytes[3] = 0x00 & 0x7F;
 HAL_UART_Transmit(&huart1, &serialBytes[0], 1, 1000);
 //HAL_Delay(20);
 HAL_UART_Transmit(&huart1, &serialBytes[2], 1, 1000);
 //HAL_Delay(20);
 HAL_UART_Transmit(&huart1, &serialBytes[3], 1, 1000);
 //HAL_Delay(20);
 write14Bit(ACN); write14Bit(AFN+upStepsF);
write14Bit(ATN+upStepsT);
 write14Bit(BCN); write14Bit(BFN+upStepsF);
write14Bit(FTN+upStepsT);
 write14Bit(CCN); write14Bit(CFN+upStepsF);
write14Bit(CTN+upStepsT);
 write14Bit(DCN); write14Bit(DFN+upStepsF);
write14Bit(DTN+upStepsT);
 write14Bit(ECN); write14Bit(EFN+upStepsF);
write14Bit(ETN+upStepsT);
 write14Bit(FCN); write14Bit(FFN+upStepsF);
write14Bit(FTN+upStepsT);

}

void leg1Play(){
 //LEG A UP

 setPos(AF, AFN + upStepsF);
 HAL_Delay(500);
 setPos(AT, ATN + upStepsT);
 HAL_Delay(5000);
 setPos(AF, AFN); //LEG A DOWN
 HAL_Delay (500);
 setPos(AT, ATN);
 HAL_Delay(1500);

}
void leg2Play(){
 setPos(BF, BFN+upStepsF); //LEG B UP
 HAL_Delay(500);
 setPos(BT, BTN+upStepsT);
 HAL_Delay(5000);
 setPos(BF, BFN); //LEG B DOWN
 HAL_Delay(500);
 setPos(BT, BTN);

 HAL_Delay(500);
 HAL_Delay(1000);
}
void leg3Play(){
 //LEG C UP
 setPos(CF, CFN + upStepsF);
 HAL_Delay(500);
 setPos(CT, CTN + upStepsT);
 HAL_Delay(5000);
 setPos(CF, CFN); //LEG C DOWN
 HAL_Delay(500);
 setPos(CT, CTN);
 HAL_Delay(1500);
}
void leg4Play(){
 setPos(DF, DFN+upStepsF); //LEG D UP
 HAL_Delay(500);
 setPos(DT, DTN+upStepsT);
 HAL_Delay(5000);
 setPos(DF, DFN); //LEG D DOWN
 HAL_Delay(500);
 setPos(DT, DTN);
 HAL_Delay(1500);

}
void leg5Play(){
 //LEG E UP
 setPos(EF, EFN + upStepsF);
 HAL_Delay(500);
 setPos(ET, ETN + upStepsT);
 HAL_Delay(5000);
 setPos(EF, EFN); //LEG E DOWN
 HAL_Delay(500);
 setPos(ET, ETN);
 HAL_Delay(1500);
}
void leg6Play(){
 setPos(FF, FFN+upStepsF); //LEG F UP
 HAL_Delay(500);
 setPos(FT, FTN+upStepsT);
 HAL_Delay(5000);
 setPos(FF, FFN); //LEG F DOWN
 HAL_Delay(500);
 setPos(FT, FTN);
 HAL_Delay(1500);
}
#endif

	Forward motion Example:

