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ABSTRACT

Deep space missions such as the Mars Reconnaissance Orbiter collect more data than
can be sent back to Earth due to limited communications bandwidth. Machine learning
algorithms can be deployed on board orbiters to prioritize the downlink of scientifically
interesting images, such as those including fresh impact craters, recurring slope lineae,
or dust devils. However, basic machine learning research is necessary to boost real-
world performance, and numerous possible convolutional neural network architectures
must be evaluated in terms of accuracy and compute requirements. A framework
is designed to reduce redundant development, to standardize the algorithm testing
process, and to allow developers to focus on the implementation details of novel machine
learning algorithms. Three convolutional neural network implementations are included
with the framework, pending use in future research.
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1 INTRODUCTION

Space agencies around the world, such as NASA, are considering new missions to Mars and
beyond. The resulting space probes must operate reliably in uncertain environments. Due
to communications constraints, it is impossible for humans to intervene when something
goes wrong. In more common situations, it is impossible for humans to react in real-time to
opportunities for scientific discovery, such as unpredictable and transient events. Moreover,
science instruments can collect more data than can be downlinked or stored on board the
spacecraft. Autonomous decision making done on board the spacecraft could make better
use of limited communications resources by prioritizing the downlink of anomalous and
scientifically interesting images [1].

However, this setting poses many challenges for modern machine learning techniques. Data
sets of scientifically interesting and transient phenomena are inherently limited in size. The
objects of interest are often distinguished by small details that are only revealed in high-
resolution images. For example, there may be just three hundred labeled example images
that are each 2000 × 2000 pixels. In contrast, modern deep learning techniques have been
successful after seeing hundreds of thousands of much smaller images, e.g., 32×32 pixels [2].

Planned missions also do not include high performance computers, but a successful demon-
stration of the scientific discovery capabilities of machine learning algorithms could result
in the deployment of modern laptop-grade CPUs and GPUs on board future Mars missions.
Hence, the Machine Learning and Instrument Autonomy group at the Jet Propulsion Lab-
oratory aims to develop machine learning algorithms that can find scientifically interesting
features in high-resolution images of the surface of Mars [3].

This project provides a framework to help developers compare machine learning algorithms
that can find scientifically interesting features in Mars imagery. It will make it easier to do
basic machine learning research to improve algorithms so that they are suitable for real-life
deployment. The framework will reduce redundant development and allow developers to
focus on the implementation details of their specific machine learning algorithms. It will
ensure that different algorithms are tested rigorously and fairly.

2 PROBLEM STATEMENT

Given the limited bandwidth of the Deep Space Network, Mars science missions generate
more data than can be transmitted back to Earth. This means that a significant portion
of observations from missions such as the Mars Reconnaissance Orbiter (MRO) are never



downlinked or analyzed. Additionally, it means that repeat observations are highly expen-
sive, making observations of scientifically significant transient events such as fresh impacts
and avalanches very rare [4].

The MRO has two cameras that operate in the visible spectrum: the High Resolution Imaging
Science Experiment (HiRISE) and the low resolution Context Camera (CTX). Currently,
scientists analyze images from the CTX to find potentially interesting features, and request
that those locations be imaged with HiRISE at the next possible opportunity [5]. Scientists
cannot immediately act based on the low-resolution CTX images because the orbiter has
moved a significant distance by the time the signal has reached Earth. Otherwise, CTX
and HiRISE images are downlinked only as bandwidth allows, depending on whether other
missions are communicating via the Deep Space Network and whether or not the MRO is
serving as a relay for ground-based missions.

Due to bandwidth restrictions and the relatively small amount of storage space on the MRO,
it is extremely difficult to observe Martian transient events. Finding such events requires
that two images be aligned and differenced. However, repeat observations are expensive,
and it is impossible to store the images on board the orbiter. Scientists are interested in the
dynamics of the surface of Mars and would like more data on transient events such as fresh
impact craters, slope streaks, recurring slope lineae, and dust devils.

Fresh impact craters occur when asteroids or comet fragments collide with the surface of
Mars, leaving a blast zone of disturbed dust and rocks [6]. Studying these craters helps to
estimate the duration of surface processes on Mars, but only a few hundred large impacts
have been found in homogeneous dusty regions [7]. Slope streaks occur when settled dust
falls downhill to reveal the surface beneath it; scientists can learn more about the weather
of Mars by monitoring these streaks [8]. Recurring slope lineae are visually similar to slope
streaks, but can be seen growing during warm seasons and fading during cold seasons; the
reason for their formation is not known with certainty, and more observations would be
helpful [9]. Dust devils, much like those on Earth, are the result of surface-atmosphere
interaction that creates thermally driven vortices, which disturb trails of bright dust on the
surface [10]; observing them can also help scientists learn about the climate and weather of
Mars.

Deploying machine learning algorithms on board orbiters such as the MRO can result in
better use of expensive and limited bandwidth by automatically identifying scientifically
interesting landmarks such as these for prioritized downlink. Additionally, the output of
such algorithms can be used as image “summaries” for transient detection across repeat
observations. The resulting increased data throughput will increase our understanding of
Martian surface processes and planetary science [4].

The performance of this strategy depends on the availability of requisite hardware on board
future orbiters, on the types of features scientists would like to detect, and on the precision
and recall demanded. Hence, one aspect of this project will be to create a catalog of the trade-
offs between accuracy and computing power for a variety of machine learning algorithms.
Currently, several different algorithms are being tested, resulting in redundant development.
The project would benefit from a small framework that facilitates the experimentation and
comparison of machine learning algorithms.



3 BACKGROUND

The Machine Learning and Instrument Autonomy (MLIA) Group at JPL has previously
been successful in deploying machine learning algorithms for data prioritization and novelty
detection on board the Earth Observing 1 spacecraft. They used a random forest to detect
clouds in images so that cloud-free images could be prioritized for downlink. They also
used an unsupervised salience-based algorithm to detect and prioritize anomalies based on
local image context [11]. The same cloud detection strategy has been deployed on board
a CubeSat [12]. The group has effective techniques for classifying landmarks [13], surface
texture detection [14], and anomaly detection [15] on the ground.

During a recent internship, a deep neural network was created based on previous work [16]
that can detect fresh impact craters in HiRISE images with 96±4% precision and 43±3%
recall (averages and standard deviations computed from five-fold cross validation). The
network was applied to find small, undocumented fresh impact craters in high-resolution
HiRISE images, demonstrating that it would be useful for analyzing image data. Curriculum
learning [17] and data set augmentation (as in Krizhevsky et al. [2]) helped the model to
converge despite the use of an unconventionally small data set. These are relatively simple
but crucial concepts that must be implemented correctly for experimental validity.

4 REQUIREMENTS & SPECIFICATIONS

The proposed framework allows various machine learning models to be easily tested and
compared in their ability to detect objects of interest (such as fresh impact craters and
dust devil tracks) in high-resolution images of the surface of Mars. It will help to assess
the tradeoff between predictive accuracy and computational requirements for these models,
which is important in deciding what model would be most appropriate for deployment on
board an orbiter. Further, it helps to ensure that the models are validated rigorously by
reducing inconsistencies due to redundant development and allowing developers to focus
specifically on the implementation details of their model. The framework assumes that the
models do semantic segmentation, that is, assigning a label to each pixel of an image.

The framework provides a common interface that the models can conform to and trains
and evaluates any model that adheres to that interface. In order to evaluate models, that
is, to assess their performance on a data set, the framework defines metrics for semantic
segmentation, such as precision, recall, and intersection-over-union. Since the data sets have
multiple labels per image, the framework provides methods to merge multiple labels into
one. In order to train the models, the framework defines methods for transforming images,
or performing data set augmentation: this helps models to become invariant to brightness,
scaling, translation, and rotation of the input images.

The training process follows an adjustable schedule that can depend on the user-defined
difficulty of training examples: this allows the developer to help the model converge with
curriculum learning [17]. When the model is done training, it generates a final report. The
report itself contains metrics such as precision, recall, and intersection-over-union evaluated



across the test set, in addition to the model’s requirements in terms of multiply-adds and
memory usage per inference.

Thousands of labels for images of the Martian surface are being collected by MLIA on the
website Zooniverse 3. The framework is able to parse these labels from Zooniverse for the
four existing workflows: fresh impacts, dust devils, araneiforms, and swiss cheese. This will
help to analyze labeling progress and also reduces storage requirements.

4.1 Related Developments

Many machine learning frameworks already exist. One popular option is TensorFlow [18],
which allows developers to define dynamic computational graphs of differentiable functions.
TensorFlow does automatic differentiation of the resulting computational graph, and the
resulting gradients can be used to update the parameters of the model to eventually converge
at a global optimum. TensorFlow makes it easy to run these computations on GPUs, an
otherwise arduous process.

TensorFlow provides a higher-level API called “Estimators” [19], which allows for easier
training, evaluation, prediction, and deployment. However, this is ill-suited to the application
domain of analyzing high-resolution Mars imagery. The API makes it difficult to make
low-level changes to models and training strategies, which are required for research and
development at MLIA.

The proposed framework is much higher-level than TensorFlow or TensorFlow Estimators, for
example, providing metrics, data augmentation, and training techniques specifically adapted
to the application domain. The user implements the model itself in a low-level framework
such as TensorFlow (or TensorFlow Keras), conforming to the framework’s interface. It also
would be possible to implement the model in another machine learning framework such as
Caffe or PyTorch. The project framework will then run the model implementation, providing
all the other common functionality that is necessary.

4.2 System Requirements

Mars imagery is high-resolution, and the project requires a high degree of robustness to
various input conditions, as evidenced by the recent global dust storm on Mars. Thus, data
augmentation methods work “on the fly” without saving data to the disk. They would oth-
erwise consume a prohibitive amount of storage space. Importantly, data set augmentation
is faster than training the model itself, which prevents a bottleneck in the flow of data to the
GPU in the training process. It does not consume an excessive amount of memory or CPU
time, which is important since it may run on a shared system. The training process itself is
seamlessly interruptible: the user is able to stop the process and reload its state from the
disk later. The framework periodically generates reports on the model’s current performance
and saves them to a log file.

3https://www.zooniverse.org/projects/wkiri/cosmic



4.3 User Experience Requirements

Since the framework is intended to be useful to other machine learning researchers, it should
be easy for others to understand and adopt. The framework is implemented in Python 3
because it is the preferred language of MLIA and the broader machine learning community.
It includes minimal use of advanced constructs like multiple inheritance, decorators, and
long list comprehensions, and it is documented so that others can modify it in the future. It
is easy to extend the framework with new metrics or data augmentation techniques.

4.4 Research Requirements

Since the purpose of this work is to make it easier to study the performance of various ma-
chine learning models, the project should include three default implementations of popular
convolutional neural network architectures such as VGG [20], ResNet [21], Inception [22],
AlexNet [2], or UNet [23], which must be modified to do semantic segmentation [16] in-
stead of whole-image classification. The framework currently provides VGG, ResNet, and
UNet architectures. The evaluation of these architectures with the framework will provide
important insights for MLIA.

5 DESIGN APPROACH

5.1 Growing a Framework

The following design is primarily the result of reading source code for many machine learn-
ing experiments, and from personal experience doing (messy and inefficient) experiments in
Jupyter notebooks. For example, the proposed model interface is the result of seeing many
model implementations, their commonalities, and operations typically performed on them.
Classes typically replace one or more tuples that are “passed around” these experiments: for
example, LabeledImage replaces the pair image, label and provides additional functional-
ity. The framework is an attempt to reduce development effort while not getting in the way
of research; it could be described as “white box” framework, because it is primarily used by
subclassing the model interface, and developers benefit from understanding the internals of
the components.

While building the framework, classes and modules were tested manually, often using a
“dummy” model implementation. This helped to make tweaks to the initial design that
were beneficial for the final product.

5.2 System Overview

The key user-facing part of the framework is the Evaluator, which takes a machine learning
model conforming to a certain interface and the path of the data set with which to train



Figure 1: System overview diagram including core classes and modules.

and test the model. Thus, the Evaluator has a Model object and a Dataset object. It also
accepts an optional list of configuration parameters.

The core of the framework is the Curriculum class, which is responsible for the iterative
training process. Since cross validation is necessary, the Evaluator has many Curriculums,
each of which only see a subset of the larger data set. These Curriculums may work in
parallel on multiple GPUs. The Evaluator has a Logger for each cross validation fold
(see Appendix A). Both the Curriculum and the Evaluator use the Metrics module for
evaluating performance on the validation set or the test set respectively.

The Dataset serves as a large “virtual” data set that is generated on the fly to save stor-
age space; it has many LabeledImages. It may have just 300 original LabeledImages, for
example, but can extend this into tens of thousands of transformed images with data aug-
mentation. The Dataset is also responsible for merging multiple labels into one unambiguous
label and for resizing images to fit in the GPU memory if necessary. Thus, a Dataset uses
the LabelMerger and Augment modules.

Models conforming to the required interface return predictions as Inference objects, which
know how to print themselves in a user-friendly and informative way. The Logger aggregates
statistics from Inference objects and writes them to disk throughout the training process.



5.3 Types

Although Python is a dynamically typed language, it is conceptually convenient to define
some “types” that are used throughout the system. An image is a two-dimensional array of
floats, or a grayscale image (since the existing MRO imagery is only one channel). A label is
a two-dimensional array of integers with the same dimension as image; each discrete integer
value corresponds to the label of the corresponding pixel in the image. The value 0 means
that the pixel was not labelled. A batch is a list of images of arbitrary length. A heatmap is
also a two-dimensional array of floats, but it is mapped to a topological color scheme when
plotted; it represents the raw output of a semantic segmentation model.

5.4 Implementation

5.4.1 Model Interface

The core idea of the project is that a variety of machine learning models can be represented
with a common interface. Any model conforming to this interface can then be evaluated
according to a standardized procedure. Since Python does not provide interfaces by default,
the framework uses abstract base classes. The interface includes the following methods:

init. This method initializes the computational graph for the machine learning framework
of choice, such as TensorFlow. It initializes the TensorFlow-related class variables that are
used in the following methods.

heatmap(batch). Returns a list of heatmaps from the model, i.e., the model’s “raw” output.

inference(batch). Returns a list of Inferences after calling heatmap. Responsible for
applying a threshold to heatmap that converts it into a discrete-valued label for comparison
in Metrics.

train(batch). Passes a batch of images through the model, computing gradients with
respect to the loss function and propagating them back through the network.

loss(batch). Defines the loss function for the network and sets up the TensorFlow opti-
mizer (the dual of the computational graph defined in init).

flops(w, h, c). Computes the number of FLOPs/multiply-adds required to make a pre-
diction on an image of size w×h×c. The number of channels (for example, RGB) is three by
default. In practice, this calls some internal TensorFlow functions to get a realistic number.
It would be possible to count the number of multiply-adds based on the network architecture,
but this would be assuming naive matrix multiplications and convolutions. This is used in
reporting model comparisons in Evaluator.

memory(). Computes the number of trainable parameters in the network, which is propor-
tional to the memory required to store the model.

load(name). Loads a trained model from disk with the given name into the computational
graph (name is optional).



save(name). Saves a trained model to a file with the given name (name is optional).

The save and load methods are called by the Curriculum class’s own save function.

In practice, this interface is implemented by TFModel, which provides TensorFlow-specific
implementations of memory, flops, save, and load. Then, when using TensorFlow, work
begins by subclassing TFModel. For example, Vgg19 is a subclass of TFModel, which can be
further extended for experimentation. Alternatively, Dummy is a model for testing purposes
which implements Model.

5.4.2 Data Objects

Thousands of high-resolution images of scientifically interesting landmarks on the surface of
Mars are being labelled on the website Zooniverse, which allows citizen scientists to make
contributions to science by labelling data. Moreover, each image has up to 11 separate
semantic (per-pixel) labels from users who may have substantial disagreements.

LabeledImage. The most important data object in the framework is the LabeledImage,
which represents a high-resolution image and its corresponding labels. Each image has an
ID that can be traced back to a larger source image from the MRO. Each image exists in its
own directory on disk along with its labels.

First, the LabeledImage provides an interface to this directory. It stores the image and its
labels in memory, but does not load them from disk until the raw data is required. Impor-
tantly, the LabeledImage provides functions to get the image and label, which seamlessly
fixes two problems: The images are usually too large to fit in the GPU memory, so get image

resizes and caches the image. There are multiple labels per image, but there can only be one
label for training and testing purposes; hence, get label uses another module to compress
all of the labels into a single label, which is then cached for later use. The resized images
and merged labels are not written to the disk, as the specific sizes and merging techniques
can change frequently.

The LabeledImage also reads a difficulty value from disk, which is chosen by the user at an
earlier stage of the development pipeline. This difficulty value is used for the Curriculum,
which will be defined below.

Inference. This class holds the output (or “inference”) of a model. It includes a
LabeledImage, a heatmap from the model, and a label obtained by applying a thresh-
old to the heatmap. It also includes the inference time in milliseconds. This class is used in
the Logger as well as for viewing model progress, e.g., in a Jupyter notebook. It is printable
and saveable for qualitative analysis by the user.

5.4.3 Modules

In Python, a module is essentially a collection of functions under a common name. It is analo-
gous to declaring static methods in a utility class. Modules provide standalone functionality.
MLIA prefers modules to classes when only one instance of the class is necessary.



Augment. Deep learning algorithms typically require millions of training images for good
performance. When transfer learning [24] from a pre-trained model (see Appendix A.3),
only thousands of images are generally required [2]. However, in some cases, MLIA has
less than a thousand images. This small data set can be extended by transforming the
examples in various physically plausible ways. Fresh impacts, for example, come in var-
ious shapes, sizes and colors. Hence, the data set can be extended by changing the
scale, rotation, brightness, position, and noise level of these images. This is called “data
augmentation” [2]. This module provides a variety of image transformation functions,
such as rotate and shift(degrees, dx, dy), zoom(scale factor), brightness(slope,
intercept), noise(sigma), and mixup(im1, im2). Each function takes a LabeledImage

and returns a LabeledImage. Importantly, each function has a GPU and CPU implemen-
tation: there might not always be an extra GPU to use for data augmentation, in which
case the framework can resort to parallel processing on CPUs. One limitation is that the
GPU implementation relies on TensorFlow, which is not ideal if the framework is used with
another machine learning library.

Dataset. Loads the data set from disk according to a provided path, e.g., creates a list
of LabeledImages. Dataset is also responsible for transforming the images en masse in the
case of CPU parallel processing.

LabelMerger. This class solves the multi-label problem with two key strategies.

rate(labs). The first strategy involves merging labels based on inter-rater agreement,
which results in a discrete-valued label that can be used to compute metrics such as pre-
cision, recall, and intersection-over-union. This strategy is parameterized by an agreement
percentage κ, in which the label is chosen which has more than κ percent of raters in agree-
ment. If there is no consensus, the pixel is left unlabelled.

melt(labs). The second strategy “melts” the labels into one high-information content label
with “soft” (or real) values. The strategy is parameterized by a “temperature” T , which
is similar to that defined in Hinton’s paper on knowledge distillation [25]. Unlike Hinton’s
paper, the values in one pixel of the image can spill over into adjacent pixels, e.g., a kind of
spatial knowledge distillation. In practice, this amounts to a Gaussian blur of the merged
label with standard deviation T .

Each function in LabelMerger takes a list of labels and returns a single label.

Metrics. This class provides the metrics to be used by the Evaluator, such as precision,
recall, accuracy, F1 score, and intersection-over-union. More metrics may be defined, such
as those used in Google AI’s paper [26] on semantic segmentation of tissue samples. Each
metric takes an Inference; it uses the ground truth label from the LabeledImage and the
inferred label to compute the metric. Each metric returns a score between 0 and 1 inclusive.
Some metrics may not be defined for all inputs, in which case they return NaN.

LabelReader. This class is responsible for loading labels from the Zooniverse data dump,
which is a CSV file. On Zooniverse, we currently have four workflows: fresh impacts, dust
devils, araneiforms, and swiss cheese. The first two workflows have been completed, and the
next two have tens of thousands of labels each. This class parses the CSV file, filters out



only specified recent workflow version numbers, and creates labels based on the labeling tool
name and polygons provided. This makes it possible to eliminate an intermediate step of
generating labels and storing them on disk. Alternatively, the module itself can be run to
generate the labels on disk. Dataset resorts to generating the label in memory if it is not
found with its corresponding image on disk.

Blocks. Provides reusable components of neural networks, making model implementations
more readable. This includes convolution, pooling, and transposed/strided convolution lay-
ers, as well as the residual block for the implementation of ResNet.

5.4.4 Classes

Curriculum. Curriculum learning was introduced in 2009 by Bengio et al. [17] and remained
largely unstudied until recently. At JPL, curriculum learning was independently rediscovered
as an effective method to learn hard decision boundaries by building up “knowledge” from
easy examples.

The proposed system needs to discriminate between fresh impact craters and other land-
marks that look similar to fresh impact craters to the untrained eye. Moreover, there are
far more of these difficult non-impact examples than actual impacts. The result is that a
classifier typically is unable to learn what a fresh impact looks like without the assistance of
a “curriculum”.

The simplest example of a curriculum is to split the training process into three stages: easy,
medium, and hard difficulty. The “easy” stage has images with clear, well-defined fresh
impacts. The “medium” stage introduces some challenging transformations of these images,
such as scaling and the introduction of random noise. The “hard” stage introduces images
that look very similar to fresh impact craters but really are not, such as dust devils or
araneiforms (dark fan-shaped deposits of dust caused by the sublimation of CO2 below an
icy surface).

This type of manually defined curriculum is supported by the presence of “difficulty” labels
in each LabeledImage object. However, there are recently proposed techniques (ca. 2018)
to automatically structure the curriculum [27], e.g., based on a second model (a “Mentor-
Net” [28]) that ranks LabeledImages according to perceived difficulty.

In this framework, the Curriculum class is responsible for training the model and ordering
the training examples by using one of multiple strategies; it is the “engine” of the framework,
deciding when to stop training based on evaluating Metrics on a validation set, when to
write log files, and when to save the models to disk for back up. Hence, a Curriculum has a
Model and a Dataset. The curriculum itself has save and load methods so that the training
process can be stopped and started when necessary, e.g., due to resource limitations.

In summary, Curriculum is the inner loop of the training process.

Evaluator. This class is the “outer loop” of the training process, deciding how to split a
Dataset into train/test/validation sets and performing cross validation. It runs one or many



Curriculums on a Model and logs the final performance metrics, i.e., graphs of performance
and statistics on runtime/memory usage. It catches interruptions and coordinates calls to
Curriculum’s save and load methods when necessary.

Logger. This class is responsible for creating graphs and recording statistics, e.g., by
processing Inference objects. The Evaluator has a Logger that is shared with its
Curriculums. The Logger is not a module because it retains state about the current cross
validation fold.

5.5 Third-Party Subsystems

The project uses several open source components: NumPy [29] is used extensively throughout
the project for its convenient N-dimensional array objects and operations. OpenCV [30] is
used to provide CPU-bound affine transformations of images, such as scaling, translation,
and rotation. TensorFlow [18] provides GPU-bound transformations of images. Keras [18],
which is included with the latest version of TensorFlow, provides a more user-friendly API
for specifying machine learning models. Three convolutional neural network architectures
are implemented in TensorFlow.

5.6 Model Implementations

Three fully-convolutional neural network architectures (for semantic segmentation) are pro-
vided with the framework to faciliate research: VGG-16 (and VGG-19), UNet, and ResNet.
They can easily be subclassed, for example, to change loss functions. By looking at the
implementation details of the parent class, it is possible to reduce the size of models by
setting certain parts of the TensorFlow graph to the identity function. After upgrading to
TensorFlow 2.0 Alpha for the Keras API, these model implementations were broken, report-
ing zero trainable parameters. After much trial and error, it was discovered that the layers
of the network must be initialized separately from the function that calls the network on an
input tensor. It was necessary to look at source code for TensorFlow to make up-to-date
implementations of flops and memory.

6 RESULTS

The proposed design fulfills the requirements and specifications of the project. Machine
learning models conforming to the interface proposed can be passed to the Evaluator in a
single line of code with minimal configuration overhead. This ensures that the models can
be tested easily and consistently as required. The LabelMerger module used by Dataset

provides the functionality necessary to solve the problem of having multiple labels per im-
age. The Augment module defines methods to extend the data set and promote invariance
to various transformations. The Metrics module satisfies the requirement for standardized



metrics such as precision, recall, and intersection-over-union. The proposed interface guar-
antees that every model can report its compute and memory requirements; implementations
for these functions have been provided for TensorFlow.

The idea of curriculum learning is central to the framework, and the Curriculum class
guarantees that it is easy for developers to use curriculum learning to train their models.
The required report can be generated by the Logger class.

The system is fast and efficient, and data augmentation does not bottleneck the training
process: LabeledImages are not loaded into memory and processed until they are required,
and they are cached after processing for quick access. Bottlenecks are avoided through
Augment’s provided CPU and GPU-based transformation functions. Transformations on the
GPU are fast and do not significantly slow down the training process. In the case of CPU
transformations, Dataset parallelizes the required transformations on multiple CPUs to keep
pace with the GPU-based training process.

The proposed framework also is simple and easy to use for other developers to understand
and adopt. While the framework internally uses “complex” programming constructs, namely
multiple inheritance and decorators, developers are not required to use these when making
new experiments with the framework; the cost in readability is offset by savings in reusabil-
ity. See Figure 2 for an example experiment implemented with the framework; while the
VGG-16 model itself is quite large, it is easy to read both examples to determine the intent
of the experiment. The default configuration of Evaluator can be inspected to find details
on training; moreover, the logged output shows performance on training, testing, and vali-
dation sets, as well as performance requirements in FLOP/s and memory usage or trainable
parameters.

Modules are used in place of classes when possible, which is the preference of MLIA. Adding
new metrics or data augmentation techniques is as easy as adding the function to Augment

or Metrics.

Figure 2: Example experiment to test two loss functions for VGG-16.

class Vgg16_Dice(Vgg16):

name = ’VGG16/dice’

def loss(self, x, y):

yhat = self.heatmap(x)

return dice_loss(y, yhat)

Evaluator(Vgg16_Dice(),

Dataset(’./fresh_impacts’))

(a) Dice loss

class Vgg16_MSE(Vgg16):

name = ’VGG16/mse’

def loss(self, x, y):

yhat = self.heatmap(x)

return mse(y, yhat)

Evaluator(Vgg16_MSE(),

Dataset(’./fresh_impacts’))

(b) Mean-squared error loss



6.1 Experimental Results

At the time of writing, the requirement to evaluate three machine learning models in the
application domain has not been fulfilled. However, one experiment has been replicated using
the framework. Previously, a VGG-19 fully-convolutional neural network was used to achieve
acceptable precision and recall on the fresh impacts task; this involved curriculum learning
and data augmentation. The framework, which provides the same model and functionality,
was used to replicate this result successfully. This, at least, is evidence that the framework
fulfills its basic goals.

7 CONCLUSION

The framework designed makes it easier to do basic machine learning research, reducing
redundant development and allowing researchers to focus on the implementation details of
their models. Hopefully, this framework will accelerate the pace of the machine learning
research that is necessary for COSMIC. While the module used for label parsing has been
sent to JPL to help with label analysis, the framework as a whole has not been used there.
It remains to be seen if it will be adopted.

8 FUTURE WORK

The framework facilitates “traditional” machine learning experiments: essentially, training
on a training set and testing on a held-out test set. However, this is not a realistic setting to
evaluate model performance; it serves as a lower bound on performance. In reality, it should
be possible to incorporate domain knowledge into the prediction pipeline. For example:
fresh impacts are quite rare, and it is unlikely to see many of them in succession over a large
area. If the model finds hundreds of fresh impacts in a few hundred square kilometers, this
prediction is likely anomalous; for example, it could be a field of araneiforms with deposits
instead of fresh impacts. Similarly, swiss cheese generally only forms in polar regions, so
the “prior” on this landmark should be a function of the orbiter’s position. Incorporating
this knowledge into the testing process is possible, but it remains a long-term goal for the
project. More realistic testing scenarios might push forward research and development, as
has been the case for machine learning historically.

One requirement was to test three models with the framework. Only one model, VGG-19,
has been tested; moreover, this was a “sanity check” instead of original research. In the
(near) future, ResNet and UNet should be tested as planned.
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A MACHINE LEARNING TERMINOLOGY

A.1 Training and Testing

The data set is often broken into three sets: the training, validation, and test sets. For
example, the training set may be 70% of the data set, the validation set 15%, and the
test set 15%. More specifically, the training set may be 210 images, the validation set 45
images, and the test set 45 images. The investigator may then train numerous models with
different parameters on the training set, choosing the one with the best performance on the
validation set. The best model is then evaluated on the test set to estimate its real-world
performance, or its generalization error. Essentially, it is unfair to test machine learning
models on data that they have already seen, so some portion of the data set must be held
out for fair testing [31].

A.2 Cross Validation

Cross validation is another technique to estimate the generalization error of a model. It
is typically used when the data set is relatively small, for example, less than a thousand
images. In k-fold cross validation, the data set is split into k evenly sized “folds”, or subsets.
For example, 5-fold cross validation with 300 images would involve 5 folds with 60 images
each. Then, for each fold i, the model is trained on the remaining k − 1 folds and tested on
the ith fold. The k test scores are then averaged to estimate the generalization error. For
small data sets, this gives a more accurate estimate of real-world performance than simply
splitting the data set once [31].

A.3 Transfer Learning

Transfer learning refers to fine-tuning a pre-trained machine learning model on a new data
set. For example, it is common to start with a large neural network that has been trained
on the ImageNet data set, which consists of millions of labelled images from the web. This
complex model is then trained on a smaller data set, such as fresh impact craters. Essentially,
knowledge for one task be “transferred” to another similar domain [24].


