

Security Lab Manager: Virtual Security Training for Universities

Engineer: Simon Owens

Advisor/Sponsor: Mark Randall

Computer Science

University of Evansville

May 2, 2019

ABSTRACT

The Security Lab Manager is a web application that manages vulnerable virtual machines for

users to practice cyber security on. Users only need to login to the website to get started – no

setting up environments or downloading software. Each exercise has unique answers for each

student, so answer sharing is not viable. Administrators can create, edit, and view: classes,

exercises, and users. Grades can be emailed out automatically.

LIST OF FIGURES AND TABLES

Figure 1 – Host Architecture

Figure 2 – Login Page

Figure 3 – Student View

Figure 4 – Administrator View

Figure 5 – Development and Deployment Process

Figure 6 – Weak Authentication

Figure 7 – Vulnerable Exercise

Figure 8 – GUI Flow

Table 1 – User

Table 2 – Administrator

Table 3 – Class

Table 4 – Exercise

Table 5 – Tool Comparison

INTRODUCTION

Learning modern security practices is difficult and time consuming. Much of this time can be

spent setting up safe environments to practice and reproduce vulnerabilities in. Some security

exercises may not work because of different operating system protections, configuration settings,

permissions, and patch version. The Security Lab Manager eliminates these problems by having

a variety of exercises that can be started in seconds. This application has a convenient interface

that allows users to start, stop, and restart exercises, and submit answers when they are complete.

Users can practice exploiting a variety of web and desktop C++/Java applications. For each

exercise, there are guides for how to code securely and prevent the vulnerabilities just exploited.

Administrators can create multiple choice questions to introduce certain topics before doing

hands on exercises. Administrators can create their own exercise or import a vulnerable

machine.

Static analyzers, Vulnerability Scanning, CI/CD, and test driven development were used for the

creation of this application. This makes the application production ready by ensuring for few

vulnerabilities and a secure design. It is easily updatable by using a Jenkins pipeline to ensure

updates are frequent and do not break functionality. It is easily deployed because Docker

containers allow for easy installation to a desktop, on a server, or on a Cloud Computing

platform. See Appendix for more information.

PROBLEM STATEMENT AND BACKGROUND

Universities desire to teach software security because of the industry demand for secure coding

and Security Engineers. The best way to prepare students is with hands-on experience seeing,

exploiting, and patching vulnerabilities. Setting up a practice area for students with multiple

computers is expensive and requires management. The typical setup would depend on the class

size and available funds: running vulnerable virtual machines would not be able to support a

class size of hundreds of students or resources could be wasted if too much infrastructure was

allocated. Services would have to be setup, systems updated, and users would have to be

added/removed. Students will frequently crash their target computers which requires constant

troubleshooting and resetting. If students are allowed full permission to the infrastructure to

troubleshoot their own problems, they could do nefarious things or even break the infrastructure.

There are a couple organizations devoted to creating practice environments for people - the most

popular one being Offensive Security [9]. Most of their courses have limited lab access time

and typically cost well over one thousand dollars per student. It is also not possible to translate

their material and labs into course grades for University students.

There are a variety of problems when students are responsible for setting up their own

environment and exercises. These exercises require virtualization software to run on because of

software compatibility issues and risk of harming the student’s computer. Students could host

their own virtual machine, but this takes time away from class, requires computing power, and

does not give students unique answers to submit. Setting up a victim and attack virtual machine

takes several hours to do and does not directly help students learn security. Just getting one

exercise to work might require installation and configuration of: an operating system patch, a

DLL, a library, an application, networking, firewall settings, registry settings, and anti-virus

rules. This configuration usually requires 4GB of RAM, and a couple CPU cores on top of the

student host OS. This may be impossible for some students or result in an extremely slow

experience for others. Vulnerable machines from the Internet also do not have unique answers,

so one student could do the exercise, email the result to the rest of the class, and the instructor

would have no way of knowing who did the exercise.

Even if all of these efforts were planned, supported, and managed there are not any solutions that

translate student exercises to grades for professors. Professors could take the time to create

many exercises and vulnerable virtual machines but there are already hundreds of great resources

available on the Internet. This is where this project comes in – the Security Lab Manager. It

takes these vulnerable exercises others have already made and manages them so students can

attack, destroy, and reset. Professors can view how long students spent on their exercises, and all

of the commands they performed. If the class is not ready for hands-on exercises, the instructor

can easily create their own multiple choice exercises for students to complete. Hosting this

application takes minimal resources and can scale easily to the class size. The GUI and exercises

work seamlessly for all class sizes. Professors have a nice interface to view completed student

exercises and can be notified if any students cheated.

REQUIREMENTS AND SPECIFICATIONS

These requirements and specifications deliver the functionality that professors and students need

in order to learn security at a rapid pace. The main goal of this application is to deliver a secure

portal to professors and students to interact with virtual machines.

1. GUI interface for students to login, launch exercises, revert machines, and submit answers

This GUI will have two main components: a grading page for professors and a page for students

to interact with their exercises.

2. GUI interface for teachers to login and view answers of students

This interface should display which students have submitted answers and if any of their answers

match each other. Since each student should have a unique answer, this will catch cheating.

Professors should be able to assign grades within seconds.

3. Students should be able to start, stop, cancel, and revert their security exercises

As a student, they should always know what action is currently processing, and have the ability

to cancel.

4. The application should allow a student to launch only one exercise at a time

This limits the resources the application consumes. Students should work on only one exercise

at a time, so they should be restricted by the application.

5. The application should be multi-threaded

Users should never have to wait for server-side action to complete before issuing other actions.

This makes the application feel nice and smooth.

6. There must be at least 3 web security exercises

This allows users to immediately start practicing upon download. No additional configuration

needs to be done in order to start learning. Web security is extremely relevant in today’s

industry.

7. There must be at least 3 desktop application security exercises

This allows users to immediately start practicing upon download. No additional configuration

needs to be done in order to start learning. Desktop application security is still relevant but less

common in security jobs.

8. The application must be developed securely with static analyzer and must undergo scanning

from web application scanning tool

Students that learn more about security may be tempted to try attacking this application for fun

or to even change their grade. OWASP ZAP will help detect vulnerabilities during each build.

9. This application should be extremely easy to setup, updated, and have documentation

Administrators should only have to download and run one command to install the application.

Administrators get reports on any issues, vulnerabilities, and code quality on the download page.

10. Each exercise must be uniquely identified for each student.

This helps translate security exercises into grades for students. This feature helps prove that the

student did their own work.

11. There must be an proxy in front of the application for scalability

Some environments may have hundreds of students which could make the web application slow.

Using Nginx allows for static files to be delivered faster, and allows administrators to spin up

more applications to meet the amount of users.

DESIGN

Overview

The webserver is a Django project that interfaces with Docker to launch virtual machines.

Figure 1 show the architecture for how users login and reach exercises.

Figure 1 – Host Architecture

The Security Lab Manager is a collection of Docker services working together to virtualize this

environment: a proxy, a web front-end, a back-end, and a database. Docker containers are used

to eliminate installation compatibility issues, scalability, and because they are lighter weight than

other virtualization software. An administrator can download the project and install the

application with one click on either Windows or Centos7 running Docker - the installer only

needs to enter the master password for the application. The administrator can then visit the IP of

the host computer via HTTPS to login and start creating users.

Once students login, they will be able to view various exercises and start them. Starting an

exercise will launch a lightweight Docker container. This container will have a unique hash in

the root directory based on: the instructor’s password, student’s name, and exercise name. The

goal is for students to find the vulnerability, exploit it, and then find the unique hash in the

exercise. Once students complete the exercise, they can submit their unique hash to the

application. If students crash the virtual machine, they can simply restart it with one click.

Instructors can then view student’s progress and be alerted if any hashes submitted are the same.

If instructors wish to add any new exercises, they can create a multiple-choice question or create

their own vulnerable virtual image. They can then import that vulnerable image into the

application by entering: the exercise’s name, where it should be grouped, and the Docker image

name.

Below are potential issues for users:

 Students will be sending malicious traffic across the network at this Security Lab

Manager. This could potentially violate any University policies.

 This application can launch Docker containers with full permissions. If the main

application was compromised, the attacker could use resources of the host machine and

pivot onto other targets.

 The Security Lab Manager must be centrally hosted and have computing power to

support the class size

Graphical Interface

The graphical interface is constructed using HTML5, CSS, Javascript, and Jquery. The login

page show in Figure 2, is the same for users and administrators.

Figure 2 – Login Page

Users are directed to the page shown in Figure 3 where they can launch exercises and submit

their answers. Users can see all of the different sections, with all of the exercises associated with

them.

Figure 3 – Student View

Instructors have an entirely different view shown in Figure 4, they can manage the performance

of the application and see which students completed their exercises.

Figure 4 – Administrator View

They can easily scale the application, add users, and send out grades to students.

Database

Information for users, administers, classes, and exercises are stored in a PostgreSQL database

because of my familiarity with the database and its easy integration with Django, is fairly fast,

and has a low learning curve. Information for users will be stored in Table 1.

DB Attribute Description

Name Identifies in human readable way

Password hash For login and unique hash in exercise

Email Unique and allows for communication

Classes<Array> The classes the user has access to

Table 1 – User

Administrators will have a different table since they have access to all exercises shown in Table

2.

DB Attribute Description

Name Identifies in human readable way

Password Hash For login and unique hash in exercise

Email Unique and allows for communication

Table 2 – Administrator

Each class will be comprised of various exercises shown in Table 3.

DB Attribute Description

Class Name Identifies in human readable way

Exercises<Array> This list of exercises belonging to a class

Table 3 – Class

Each exercise should have a unique hash for every user shown in Table 4.

DB Attribute Description

Name Identifies in human readable way

Configuration Text for multiple choice or container

Answer Hash Unique for every user and exercise

Table 4 – Exercise

Vulnerable Exercises

Three custom web and desktop exercises have been created. There are also instructions on how

to create and import new exercises into the application. One of the web exercises is a weak

authentication exercise. This exercise will be built on top of the Ubuntu Docker image. The

example will be a JavaScript web page which contains the code in Figure 6.

If (usrr.value==”simon” && pass.value==”password”){

Figure 6 – Weak Authentication

Below you can see the GUI generated for this exercise.

Figure 7 – Vulnerable Exercise

Users could simply view the source of the page to discover where the login page directs to.

DEVELOPMENT

Continuous Integration and Continuous Delivery

This project is developed using CI/CD via Jenkins. Jenkins is a popular open source CI/CD tool.

This allows the application to easily manage dependencies, vulnerabilities, and enables easy

contribution. Figure 5 is a diagram for how the application gets developed and deployed.

Figure 5 – Development and Deployment Process

 Using Dock as the visualization image allows users to easily add new security exercises.

I do not need to spend the time making new exercises since other professionals already

make things like WebGoat, Bricks, and Damn Vulnerable Web Application found on

OWASP site.

https://jenkins.io/
https://www.owasp.org/index.php/Category:OWASP_Project
https://www.owasp.org/index.php/Category:OWASP_Project

 Using an Nginx proxy and Docker containers allows the administrator to scale the

application’s performance easily. This application could support anywhere from 5 to

hundreds of users via load balancing and redundancy.

 The continuous integration Jenkins build will detect if a base container breaks

functionality upon any update. A failed build on the development branch will not push to

production so stable releases can always be used. Before any code can be added to

production, all tests must pass, and there must not be any Sonarqube vulnerabilities, code

smells, or bugs. Snyk and Dependabot do scans against the project for common

vulnerabilities and my dependencies.

 All requests to web application front-end come through Nginx via HTTPS so attackers

cannot snoop on traffic or execute remote vulnerabilities easily since Nginx has a great

security program.

 A vulnerability web scan is done against the system every build to ensure none of the

OWASP top 10 exist in the web application.

RESULTS

The application met all requirements, is much more efficient than using virtual machines, and

helps students learn security in a hands-on way. This project was an incredible learning

experience because modern security and CI/CD tools were used while being a full-stack

developer. Docker was much more complex than I anticipated – I am still learning their CLI and

software development kit. Docker containers are extremely powerful for virtualizing

applications because of their efficiency – creating a unique Docker container can take seconds

whereas creating new virtual machines generally takes half an hour. Another success was using

the various tools throughout project development:

 Jenkins - this allowed me to start automated vulnerability scans and deploys on every

commit. I would have had to do a ton of manual work if not for this tool.

 Sonarqube – this caught several vulnerabilities in my project. It also kept my code

cleaner to best practices.

The project seems to be secure, stable, and creates unique exercises for students. Below is a

table comparing downloading vulnerable software on your own computer, setting up virtual

machines, and using the Security Lab Manger.

Table 5 – Tool Comparison

This application has potential to be extremely useful to Universities and business trying to teach

security – because it is efficient and automates the process of assigning grades to students for

their efforts. Below are some features important features:

 Automatic grading/emailing

 Configure all data via GUI

 Secure web portal

 Four full virtual exercises

 Scales to performance needs

Login Page

InstructorStudent

Web Desktop Edit Database Scale App

Find unique answers View Submissions Automatic Grading

Figure 8 – GUI Flow

Figure 8 is the general flow that users and instructors can navigate on the site. Users only need

to login to the website to get started – no setting up environments or downloading software.

Each exercise has unique answers for students, so answer sharing is not viable. Instructors can

check all of the submissions to check if someone submitted the same hash – this would alert

them that cheating has occurred. Administrators can create, edit, and view classes, exercises,

and users. Grades can be emailed out automatically. If the site settings can also be changed to

limit or increase the CPU/RAM being used by this application as well to keep up with the class

size.

The main failure of my project was not creating enough exercises – I planned on creating 6

virtual exercises but I was only able to create 3. Creating exercises in Docker containers is not

that hard but does take a decent amount of effort. I definitely have the ability to create several

exercises, but I ran out of time as the project ended.

Several more features would significantly enhance the value of the Security Lab manager. All of

these features have been logged in Kanban boards if I decide to further develop this application

after graduation.

CONCLUSION

This application was developed in a way to maximize satisfaction from the product owner by

presenting constant demos and gathering feedback. Modern development practices like test

driven development, static analysis, vulnerability scanning, and CI/CD enhanced the applications

security and stability. This project enhanced my knowledge as a developer and security

engineer. Carefully planning, adjusting planning, using CI/CD, and injecting static analysis into

application development makes a significant difference in the product created. The Security Lab

Manager is a great tool for learning security in a classroom setting safely.

REFERENCES

1 – Continuous Code Quality. (n.d.). Retrieved from https://www.sonarqube.org/

 2 – OWASP Zed Attack Proxy Project. (n.d.). Retrieved from

https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project

3 – Support. (n.d.). Retrieved from https://anchore.freshdesk.com/support/home

4 – Jenkins. (n.d.). Retrieved from https://jenkins.io/

5 – Browser Automation. (n.d.). Retrieved from https://www.seleniumhq.org/

6 – The fun, simple, flexible JavaScript test framework. (n.d.). Retrieved from

https://mochajs.org/

7 – Django. (n.d.). Retrieved from https://www.djangoproject.com/

8 – Docker Hub. (n.d.). Retrieved from https://hub.docker.com/

9 – Information Security Training Online. (n.d.). Retrieved from https://www.offensive-

security.com/information-security-training/

https://www.sonarqube.org/
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://anchore.freshdesk.com/support/home
https://jenkins.io/
https://www.seleniumhq.org/
https://mochajs.org/
https://www.djangoproject.com/
https://hub.docker.com/
https://www.offensive-security.com/information-security-training/
https://www.offensive-security.com/information-security-training/

BIOGRAPHY

Simon Owens graduated from the University of Evansville in May 2019 at the age of twenty two

years old. He has grown up in Evansville his entire life but is working for Raytheon in

Indianapolis as a Cybersecurity Engineer. Simon specializes in offensive security testing for

Raytheon and working with developers on how to develop securely and integrate testing into

daily workflow. His open source projects can be found at: https://github.com/so87 and

https://gitlab.io/simonowens157 .

https://github.com/so87
https://gitlab.io/simonowens157

Appendix

Static Analysis

 Static Analysis is the method of analyze the syntax of a programming language for

improper style and flaws without being ran. The analyzer will attempt to analyze logical paths

and look for logic that could be exploited by certain input. Sonarqube was chosen as the static

analyzer because of its popularity, free usage, IDE plugin, and support of Python, Javascript,

HTML, and CSS. Sonarqube will display errors in the IDE while you code real time, and will

give you project metrics like: total vulnerabilities, total code smells, test coverage, and total lines

of code. Static Analyzers are used during development to decrease technical debt – because

vulnerabilities are much cheaper to fix the faster they are found. Sonarqube will not catch all

vulnerabilities, which is why vulnerability scanners are also used. To learn more about

Sonarqube, please visit their website [1].

Vulnerability Scanning

 OWASP ZAP – Vulnerability scanners send various inputs to a target and analyze the

corresponding output for known vulnerabilities. There are vulnerability scanners for Operating

systems, Docker containers, C++ applications, Web Applications, and so on. Since this project

is a web application and uses various Docker containers, OWASP ZAP and Anchor Engine will

be used. OWASP ZAP is a well-known web application vulnerability scanner that looks for

weaknesses like cross site scripting, SQL injection, authentication bypass, and other common

weaknesses. Each time a build is performed on this project, OWASP ZAP will begin a scan, and

save the result to later analyze. This allows the developer to see what an attacker would see

when scanning the application for vulnerabilities. Anchor Engine analyzes the contents of a

Docker container for misconfigurations and vulnerable libraries/tools. An example is that some

https://www.sonarqube.org/

versions of SQL contain race condition vulnerabilities which can be exploited. If a Docker

container was running the old version of SQL, Anchor Engine would report this information

after a scan. To learn more about OWASP ZAP[2] and Anchor Engine[3], please visit their

websites.

Continuous Integration and Continuous Delivery

 Continuous Integration is the process of merging all approved code into a source

controlled repository. Code is approved for integration if automated tests pass. This way all

developers can improve the production code base without breaking functionality or injecting

bugs. Continuous Delivery is the process of automatically making the integrated software

changes to the production environment. This allows a developer to see their changes the same

day in production – rather than upgrading application vulnerability every quarter or year.

Jenkins is the Continuous Integration and Continuous Delivery (CI/CD) tool used for this

project. Every time the development branch is updated, Static Analysis, Vulnerability scans, and

tests are run. If all of those tests pass, and a certain level of quality is met, those changes are

merged to the production branch, and then deployed on my local server. To learn more about

CI/CD, or Jenkins, visit Jenkin’s website [4].

Test Driven Development

 Test-driven development (TDD) is a software development process that relies on the

repetition of a very short development cycle: requirements are turned into very specific test

cases, then the software is improved to pass the new tests, only. This is opposed to software

development that allows software to be added that is not proven to meet requirements. Tests are

written first, the test should fail, code is written to attempt to pass the test, once passed the code

is reviewed, and this process is repeated for every requirement. This helps developers focus on

https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://github.com/anchore/anchore-engine
https://jenkins.io/

meeting requirements and creating better tests that alert the developer when introducing a change

breaks functionality.

 Selenium and Mocha are used as the primary testing tools. Selenium allows for easy

functional testing – a web browser is starts, navigates to a certain page, and then looks for a

specific result. Mocha tests are used for basic unit testing and to check for basic security

configurations like redirects and key strength. To learn more about Selenium[5] and Mocha[6],

please visit their websites.

Docker Virtualization

 Docker is a virtualization technology that puts applications and operating systems into

what they call a container. This container is supposed to be a slimmed down version of a virtual

machine – only the libraries and tools required to run an application are included. This generally

results in a smaller and more efficient virtual machine. Docker has the ability to easily create

multiple containers to scale to developer’s needs. Docker has images on their site[8] which are

preconfigured for different applications. For more information about Docker, I recommend

watching this video.

Django Framework

 Django is a framework for creating websites. It is based on python and open source. It

already has several built-in features to make authentication, scaling, and database interaction

easy and secure. This is how websites - even simple ones designed by a single person - can still

include advanced functionality like authentication support, management and administrator

panels, comment boxes, file upload support, contact forms, and more. Python, JavaScript,

https://www.seleniumhq.org/
https://mochajs.org/
https://hub.docker.com/
https://www.youtube.com/watch?v=YFl2mCHdv24

HTML, and CSS are used in conjunction to create web pages for this project. To learn more

about Django please visit their website [7].

https://www.djangoproject.com/

