

Time Capture Final Report

Dalton Meny

Project Advisor & Sponsor: Dr. Roberts, University of Evansville

Computer Science

University of Evansville

May 2, 2019

ABSTRACT

In today’s world, it can be increasingly difficult to find pictures of events and places or how a

certain place has changed over time. To solve this problem, this project has created an iOS

application that allows users to share and view photos based on their location. This allows users to

see a virtual timeline of the place they are at that point in time.

ACKNOWLEDGEMENTS

 I would like to thank the project sponsor, Dr. Don Roberts for all his help and advice

involving the design and creation of this project. I also would like to thank Dr. Deborah Hwang

for her feedback and critique of my project throughout the entire process.

LIST OF FIGURES

Figure 1: System Overview

Figure 2: Taking and Confirming a Photo Mockup

Figure 3: Capture Architecture

Figure 4: Requesting authorization to use location services

Figure 5: Select Search Radius Mockup

Figure 6: Timeline View Mockup

Figure 7: Capturing a Photo

Figure 8: Confirming a Photo

Figure 9: Radius Selection

Figure 10: Timeline Screen

Figure 11: Login Screen

Figure 12: Signup Screen

LIST OF TABLES

Table 1: Table for Photo Information

Table 2: Table for User Information

INTRODUCTION

 This project tackles an interesting problem: how to share pictures of a specific place with

other people. There have been many attempts to solve this problem, but none have exactly

tackled this problem in particular. To solve the problem, an iOS application has been created to

allow users to take and share photos within the application and view other photos based on a

radius from their current location. This section of the application has been designed to resemble a

timeline that users can scroll through. This project used Ruby on Rails to create a backend

database and took approximately 180 hours. To complete this project, there were many steps and

pieces that had to be put together to achieve the final product

PROBLEM STATEMENT

Imagine that a person is walking down a street or down a path and they come across

some landmark or a feature that stands out. They wonder how this feature has changed over time

or who else has noticed it. They want to share this feature at this point in time with other people.

Maybe an event is taking place that a person wants people who visit this location in the future to

know about. In today’s world, most platforms focus on the user first and the location second. If a

user does not have a large social media circle, it can be hard to find pictures of the events and

people around where they are. This is what makes this problem interesting. This project

questions fundamental idea of what a platform revolves around. This problem requires that the

location be the primary concern, rather than the user. This is what Time Capture intends to fix.

Looking at photos of your current location should be a simple and fun event. It should not be

burdensome or search-intensive, as it often tends to be. It should be simple to look at photos of

your current location.

REQUIREMENTS

 To solve the problem of wanting view more pictures of your surroundings, this project

created an iOS application that will allow users to share photos based on their location. Photos

are only viewable by a user if they are within a certain radius of where the photo was originally

taken. This application is written using Swift. This is a language designed to be used for iOS,

which makes it an ideal choice. Swift is used for the frontend. This project also used Ruby on

Rails and MySQL for backend implementation. This backend is used to store the photos and

their location. This is intended to be a simple solution to create a database.

SPECIFICATIONS

 In this project, there are two fundamental actions. These are when a user takes and posts a

picture and when a user views a picture. These separate functions are presented by the two main

screens that will be the focus of the application. A third screen is focused on less important

features such as general settings. For taking and posting photos, the application implements the

following features.

• Only allow photos to be taken within the application

• Store the photo with geolocation of where the photo was taken and time the photos was

taken in a database

These features allow the user to share their experience with others. People in the future will

be able to view this specific point in time by a user taking a picture within the application. It will

be possible to share a landmark at a certain point in time.

For viewing photos, the application performs the following features.

• Query the server for all photos within a certain radius of the user, based on their selection

from a predefined list

• Display these photos in chronological order to the user

• Allow the user to scroll through the photos

• Display of photos should resemble a timeline.

These features allow users to see how a certain location or landmark has evolved over time.

The application is able to present an easy way to view photos of a user’s current location without

much hassle. Viewing the photos should be enjoyable and not search-intensive.

Also, there are some smaller addition features. These include the following.

• Allowing users to see the photos they have previously posted

• Allowing users to flag content that is inappropriate

• Allow users to change general settings of the application

Overall, the design should be simple and straightforward. The UI should not be cluttered with

extraneous features that add nothing to the final project. The application is divided into 3 main

screens that each tackle the three sets of lists above.

DESIGN APPROACH

As mentioned before, this project consists of a frontend and a backend. The backend is

used to store the photos, the location data, the time data, and the user information. The frontend

communicates with the backend when the user uploads a photo or is looking at photos in their

area. This radius in which users can view photos is variable based on the radius they select from

a predefined list. The frontend is then responsible for displaying the photos. This relationship can

be viewed in Figure 1.

Figure 1: System Overview

Backend Design

The database consists of two main tables. The most important table contains the photo

information. This includes the PhotoId, which is an integer unique identifier assigned to each

photo uploaded to the service, Latitude and Longitude, which are doubles of the GPS data where

the photo was taken, Time which stores the time in the yyyy-mm-dd hh:mm:ss.ff format, Path

which is a string that give the path to the photo in the corresponding directory, and UserId which

is an integer unique identification of the user who submitted the photo. This is needed for users

to be able to see photos that they have posted. An example of this table is shown in Table 1.

Photos & Info

Photos & Info

5 Mile Radius
Large Number

of Photos

Ruby on Rails
Database

1 Mile Radius
Smaller

Number of
Photos

PhotoId Latitude Longitude Time Path UserId

0034 38.4789 -86.803 11/16/18 09:06:56 Folder/filename 12345

0035 37.9716 -86.803 11/16/18 22:48:01 Folder/filename 98765

Table 1: Table for Photo Information

 The next table consists of the user’s information. While this application does not allow

users to add friends, it will give user controls over photos they have uploaded. A user may want

to delete a photo off the application at a later time or may want to view the photos in the future.

This table will consist of the UserId which was included in the last table, Email which is a string

that is the user’s email address/login, Name which is a string of the user’s name, and password

which is a string of the user’s account password hashed. An example of this table is shown is

Table 2.

UserId Email Name Password

12345 dm242@evansville.edu Dalton abcdefg

987565 username@gmail.com Dalton2 Adc123

Table 2: Table for User Information

 The application communicates with the frontend through the use of APIs. These are run

on a web server using rails. Using a get or post request, the application can perform the

corresponding function to either get a JSON string from the API’s or save new information to the

database. This project utilizes SQLite through Ruby on Rails for the databases.

Frontend Design

The frontend consists of two sections for taking and viewing pictures respectively. These

sections are represented by different tabs within the application. The first tab is for photo taking.

This section is very straight forward. It allows users to take an in-app photo and then ask them

for confirmation to upload it. A mockup of this section can be seen in Figure 2. After a photo is

confirmed or canceled, it should return the user to the photo tab.

Figure 2: Taking and Confirming a Photo Mockup

 The camera portion of this app was created by capturing the camera’s output and

displaying on the user’s screen. This is possible using the AVFoundation framework. The

capture architecture is shown if Figure 3. When the camera button is pressed it sends the user to

the next screen. At this moment, the time and GPS location are recorded. The location is

retrieved using the Core Location framework. Granting application permission through Core

Location will show the user a pop-up box similar to the one in Figure 4. For confirming a photo,

the user sees the photo taken, a save button, and a cancel button. The photo is sent from the

previous screen, which cancel will take the user back to. When the save button is pressed, all the

Upload Photo?

Cancel Upload

relevant information, included the previously saved time and location, is encoded into a JSON

request and sent to the database. The photo is saved on a file system and the name of the path is

saved in the database. This path’s name is based on the time the photo is taken and the user’s id

number.

Figure 3: Capture Architecture1

Figure 4: Requesting authorization to use location services2

 The next tab in the application is by far the most interesting and most complicated. This

is the section that allows users to view photos based on their locations. When a user first enters

this section, they are prompted with a screen to select the radius that they wish to search. The

options will be 500 feet, 1 mile, or 5 miles. A mockup of this design is demonstrated in Figure 5.

 Figure 5: Select Search Radius Mockup

 This screen’s implementation was fairly straightforward. Each radius option is a button,

that when pressed, determines which was pressed and send the conversion to meters to the next

screen, which is the timeline screen. This is because the function to determine if a set of

coordinates are in the current area requires meters.

After the user selects the radius that they wish to search, all photos that were taken within

the selected radius of the user will be displayed. This is achieved by getting the photos from the

database, decoding the JSON, and using the Core Location framework again. The

CLCircularRegion class found in the Core Location framework which allows an application to

create an object of this class and test a new set of coordinates and determines if it falls within the

radius is used.3 Using this, the selection of photos is refined and the photos are displayed in a

timeline that the user can scroll through. Starting off, the oldest photo is displayed. Then users

can scroll to the left to view newer photos. To the left and right of the main photo, the newer and

older photos are displayed respective to their chronological order. This is possible using a

Select Radius ¯

500 feet
1 mile
5 miles

Search

UICollection view to create a template for each cell and giving each cell at each index the

appropriate information, namely the corresponding photos and the formatted datetime. At the top

of the screen, the current radius is displayed and when pressed. This is possible by the previous

screen passing the text of the button pressed to this screen.

The final tabbed section in the application is for general settings within the application.

This section only has two actions for the user. The first is a “My Timeline” which sends the user

to a modified version of the timeline screen where a value of -1 is sent to the screen. Doing this,

all photos taken by the user are displayed regardless of their current location. The only option in

the setting is for the user to logout. When this is pressed, the user is sent to the start screen.

The final screens not included in the tabbed section are for logging in and signing up.

When a user first enters the application or logs out, they are sent to a start screen which simply

displays the name of the application and two buttons – one to login and one to sign up. In the

login screen, the user can enter an email and password. This screen gets the user info from the

database, decodes it, then makes sure the entered criteria has a corresponding entry in the

database. This sign up screen is slightly more complicated. The user must enter an email, name,

and password. Firstly, this screen gets the current users from the database, decodes the JSON,

and makes sure that the email is not already taken. If that is true, then the entered information is

encoded into JSON and sends it to the API. On a successful login or signup, the user is sent to

the camera screen. The user will remain logged in on a device until they logout.

Alternate Design

 One alternate design this project faced is the ability for the current photo in the center of

the screen would be enlarged. As the user would scroll through the timeline, the center photo

would change, and a new photo would be enlarged. This feature is demonstrated in Figure 6 as a

mockup. This feature was not implemented mainly for the complexity required to complete it,

but also the dwindling time available to do so.

Figure 6: Timeline View Mockup

RESULTS

 Overall, this project was successful in creating an application that is capable of sharing

and viewing photos based on a user’s location. Certain elements, such as the design could use

some improvement, but the application fulfills the requirements of the project. The camera,

confirmation, selection radius, and timeline screens are shown on Figure 7-10 respectively. The

login and signup screen and shown on Figure 11 and Figure 12.

November 16, 2018
10:34 AM

Current Radius: 1 mile

Figure 7: Capturing a Photo Figure 8: Confirming a Photo

Figure 9: Radius Selection Figure 10: Timeline Screen

CONCLUSION

 In conclusion, this project has created an iOS application that is capable of sharing photos

based on a user’s location. It has successfully filled the major requirements such as the in-app

camera and the timeline view to display pictures in a user’s area. Doing this, as user is able to see

a virtual timeline of their current location. The project consists of a frontend and a backend using

Swift and Ruby on Rails respectively. These two sides communicate to share information and are

critical for the functionality of the application. This application has required a large time

investment and included a great deal of trial and error.

Overall, this project had a large learning curve. The projected started out very slow

moving, but toward the end the project started making much more sense and seemed much

simpler. Swift has many useful tools available, but it can be difficult knowing what to use. The

APIs proved troublesome at first but quickly became trivial and did not require much work in the

Figure 11: Login Screen Figure 12: Signup Screen

end. Making an application is a very interesting and fulfilling experience but it takes a great deal

of hard work to accomplish.

Future Work

• Bettering API security

• Bettering password hashing

• Improve UI

• Add more features to timeline view

• Add more general settings

REFERENCES

1. “Cameras and Media Capture”. Apple Developer.

https://developer.apple.com/documentation/avfoundation/cameras_and_media_capture.

2. “Core Location”. Apple Developer. https://developer.apple.com/documentation/corelocation.

3. “CLCirclularRegion”. Apple Developer.

 https://developer.apple.com/documentation/corelocation/clcircularregion.

BIOGRAPHY

 The project engineer is Dalton Meny, a Computer Science student at the University of Evansville. Dalton is

from Dubois, Indiana. After graduation, he hopes to get a job in Software Engineering, but is not sure where yet.

