

The Un-Division Network ~ Subdivision Builder

Project Engineer: Jacob Darabaris

Sponsor: Deborah Hwang

Project Advisor: Deborah Hwang

Computer Science 497

University of Evansville

May 2, 2019

ABSTRACT

The goal of this project is to create a web application for which Home Owners

Association (HOA) Members can design a subdivision and attach information to the objects

inside of it. Members can then save the subdivision to a database, and the map becomes an

organizational and record keeping tool that fills a need not yet accounted for. Once a subdivision

is saved, this application also can be useful to realtors and prospective homebuyers, who can use

the information provided by HOA members to make more informed decisions.

ACKNOWLEDGEMENTS

I would like to sincerely thank my advisor Dr. Deborah Hwang for keeping me on track,

helping maintain sight of the project focus, and fielding all general questions. I would also like to

thank my friend Turki AlHarbi for help with both the initial database set up as well as general

back end structure planning. Finally, I would like to thank my friends Majd and Mohmmad

Soufan for their indispensable advice regarding the back end, as well as fielding many database

specific questions.

LIST OF FIGURES

Figure 1: Application Home Screen

Figure 2: Builder Mode with House Object Placed

Figure 3: Builder Mode on a Small Screen

Figure 4: Example of ‘Invisible Last Child’ - jQuery Limitation

Figure 5: Builder Mode with Attributes applied to House Object

Figure 6: Structure Table Components

Figure 7: Builder Mode with Subdivision Ready to be Saved

Figure 8: Viewer Mode with No Subdivision Saved

Figure 9: Viewer Mode with Subdivision Saved and Attributes Visible

INTRODUCTION

Across the US, two types of homes are being built: Large estates in the country, and

Family Designed Homes in subdivisions. Subdivisions pop up everywhere with tens to hundreds

of similar homes, creating effective communities in each at the smallest possible level. These

communities largely have been ignored and underrepresented on the Internet, and this project

aims to change that. The goal is to create a tool for these community members, or Homeowners

Association (HOA) Members, in various subdivisions across the US to make their current

responsibilities easier, as well as open new avenues for meaningful connections and experiences.

It would exist as a web app designed for larger screens. This application platform features a

unique subdivision builder/viewer, containing housing and resident information on an interactive

map.

This subdivision builder is the key focus of the project, and it is a program that lets users

add a personal touch to their personal subdivision overview. They can digitally build and

personalize the map of their subdivision in an interactive view, adding information such as:

housing vacancy or basic resident information, not limited to: family name, if there are kids any

outdoor pets, fences, contact info, etc. Undeveloped and proposed building info is visible on the

map as well. In addition, there is potential access to resource consumption statistics, such as

water and electricity usage, to support incentives amongst members to be the greenest as

possible. The application is designed to be part of a much larger platform with a profile system to

utilize the builder in different and more useful ways. Those who utilize this platform can make

smarter buying decisions, better plan events, and make new connections with neighbors.

PROBLEM STATEMENT

The idea of a subdivision is simple, develop an area of land fit for modern homes, then

produce homes similar in size and features across a grid structure in that area. In most growing

towns and communities, subdivision birth and expansion are nearly inevitable, as the need for

fast and cheap housing is driven upwards by new families. In terms of housing, subdivisions are

the most efficient use of land, save for towering skyscraper complexes [1]. The scope of

subdivisions can be broken down to 3 areas: building and planning subdivisions, buying and

selling subdivision housing, and post-sale maintenance. Historically these 3 areas have been

loosely linked only as needed, and with few useful tools and resources available in each area.

A network needs to be established to link these distinct parties, and better serve their

needs and responsibilities. For Building and planning, the two focus users are Builders and

Developers. Developers lay the groundwork for the subdivision, whether it be electrical lines,

plumbing, roads, and more as well as working closely with the town to satisfy rules and

regulations. The builders then come in and develop the actual homes. Builders and developers

need a platform to better communicate the present and future state of the subdivision to each

other, as well as serve as a hub for pooled information [1].

For the buying and selling users, realtors and prospective buyers make up the mix. Many

great homebuying solutions exist for both realtors and homebuyers to utilize, but most

information they provide is impersonal and only deal with monetary value and physical features.

There is not a way to learn qualitative details about a community without spending a lot of time

there in person. Realtors also struggle with gathering information on homes, as there is no central

database. A lot of time could be saved if there was only a unified source of information [2].

Post-sale maintenance users refer to people or groups who are now essentially on their

own looking to upkeep their community. At this point, the developer is long finished with his

work, and the builder is likely inactive as most of housing lots are finished. Home Owners

Association Members and the Management Companies they employ make up this third category

and they are truly in the most need of assistance. HOA members are ordinary people trying to

decipher cryptic building rules and home expansion regulations. They are concerned about their

long-term home values but also would like a better way to organize each other. They need an

outlet to answer all of their questions as well as keep in touch with key players in the

organization and above [3].

A subdivision home flows through the following steps: A developer develops the land. A

builder builds a home on the land. A prospective buyer seeks to buy a home. A realtor sells them

a home. Then finally that homeowner becomes a HOA member, and likely works with a

management company [4]. The problem lies in the fact that at each stage in the model each group

quickly breaks ties with group that led them to the next step, and a lot of information and

opportunities to communicate are lost (or exclusive to each group). A unifying social network

with intuitive features is needed to avoid treading over the same grounds twice and allow for

progress in previously impossible ways.

Specifications

The Un-Division Network will exist as a Web Application and will require the use of

several different languages and implementation of several different features. Originally, both

PHP and JS were planned to be used sparingly for both the back and front end respectively, and

C# via the ASP.NET Framework was to be used for the actual web application—the subdivision

builder. Unfortunately, a lack of research during the design phase caused considerable changes in

implementation. It was originally thought that C# could be used to build web applications akin to

the way desktop applications are created via WPF or UWP. Unfortunately, C# Web Code, also

known as Razor Pages, are primarily designed for back end work, specifically linking data

objects. JavaScript and jQuery libraries became the sole means of front-end implementation. The

project still utilizes MS SQL Server as a database for user information as planned. The database

is functional but minimal.

Due to limitations in time and understanding of the database, a profile system was not

implemented. Many planned features, such as hierarchical views dependent on user type and

support for an unlimited number of subdivisions based on which subdivision a member is a part

of, had to be postponed for later development. The focus also completely shifted to the

Subdivision Builder, and the other three planned areas are completely absent. Even without the

hiccups, it would have been extremely unlikely that these features would have been present and

worked well.

With the focus set on the Subdivision Builder, specific requirements come into focus.

Users should be able to design and a subdivision and save it, and view and edit it again at a later

time. There should be one page strictly for building a subdivision, and other strictly for viewing

the subdivision. In designing a subdivision, users should be able to add and position objects on

screen and assign attributes to them. Objects should change depending on user inputs and

attributes assigned to them. The interface should be easy to use and intuitive.

DESIGN APPROACH

 The Subdivision Builder was approached by addressing the following questions: ‘how do

features work’, followed by ‘how will someone break this’, and finally ‘is this fun and easy to

use’. First a home screen was created, which does not offer any functionality or purpose other

than a glimpse into the scope of the original project (see Figure 1).

Figure 1: Application Home Screen

The first true functional problem was choosing a way to allow the addition of images to a web

page, and then naturally, manipulation of said images. A JavaScript library called jQuery UI

proved to be exceedingly useful early on, with a feature called ‘append’, which adds a specified

element to either the start or end of a targeted parent object. Another feature called ‘draggable’

allowed users to reposition the image on the page within the confines of its parent object.

Draggable also has a ‘snap’ attribute that will snap an object’s border to that of another adjacent

object’s border. At this point, the base level desired functionality was achieved, and focus could

be diverted to a number of different requirements.

 The next goal was to work on the actual layout of the page. First a collapsible side bar,

specifically a list-tree, was implemented containing a list of possible image objects to be added

by the user, such as roads and homes. Then the frame for which the subdivision could be built on

screen was created, and it was deemed best to only allow large desktop screens to be able to use

the builder (see Figure 2).

Figure 2: Builder Mode with House Object Placed

So rather than resize the frame on smaller screens, users with screens smaller than a designated

pixel width would instead see a message informing the user to switch to a larger screen (see

Figure 3).

Figure 3: Builder Mode on a Small Screen

A feature that would have been ideal to implement here would be a resizable and zoomable

frame. Resizable in the sense that the frame can be made bigger than default, but not smaller.

Users would likely want to build a subdivision larger than that which could fit in the frame. This

is where the main problem with the design began to emerge.

 While the choice to use jQuery was ideal for bringing quick results to the project, it

ultimately proved inflexible enough for the project’s particular needs. jQuery provides only two

rigid functions for adding element to a DOM, append and prepend, the latter of which was not

used in this project. As stated, append adds a given element inside a specified parent element

after the last child. What caused problems though, is even if an object is appended and moved

around (using ‘draggable’), the page still remembers the origin of that initial placement.

Subsequent appends will act as if the last child is still present at its origin position and would

then place it after what looks like empty space (see Figure 4).

Figure 4: Example of ‘Invisible Last Child’ - jQuery Limitation

In this example, six objects were appended to the screen, but the second object appended was

moved from its original spot. The third object (assuming top leftmost is the first object) was

appended not immediately next to the first object, but after an empty placeholder space for the

second object that was moved. Attempts were made to address this issue, notably applying CSS

to each object to make its top and left coordinates zero. From all the forum posting and

documentation (or lack thereof) available, it seems not possible. This would cause more

problems later.

 Aside from this issue, the next step was to make a rotate button as well as an onscreen

form that are only present after a user clicks an object to add. Six fields for the form appear on

click, three required, for the user to fill. Two of the required fields, Build Status and Owner

Status, are selection fields that physically change the object that was previously added to the

screen, specifically its color and overlay (see Figure 5).

Figure 5: Builder Mode with Attributes applied to House Object

After filling the required fields, the user will be able to click a green ‘Checkmark’ button and the

object’s attributes, rotation, and position will be locked into the page. Alternatively, at any point

the user can click the red ‘X’ button and the object will be deleted. The functionality behind the

green ‘Checkmark’ button was the first to require use of the backing C# Razor Pages, which

stores all the form elements, as well as other relevant information, into appropriate holders (see

Figure 6).

Figure 6: Structure Table Components

After the green checkmark button is clicked, the form and rotate button disappear and a ‘Save

Changes’ button becomes available. The ‘Save Changes’ button is the link between the MS SQL

Server database, and acts as an Ajax post request. The Structure table, which may have one or

many objects in it, is saved to the database (see Figure 7).

Figure 7: Builder Mode with Subdivision Ready to be Saved

 Then the Viewer Mode page needed to be built, which is essentially a non-interactable

Builder Mode page (see Figure 8).

Figure 8: Viewer Mode with No Subdivision Saved

The intent was to allow the user to be able to make informational edits on this page, and this is

where more problems came into play. As C# is running server side, and JavaScript is running

client side, the vision of allowing users to edit information on the page became out of reach

quickly. The previous map on the builder page was drawn entirely using JavaScript, while the

map on the viewer page needed to be drawn user Razor code. Adding event handlers in the

previous fashion was now impossible, and instead opted for a chart at the bottom of the page

displaying all object attributes. The only problem remaining was that it is not entirely apparent

which set of attributes belonged to which object on the map. Many attempts were made to mark

or label homes and streets populated with Razor code, but nothing seemed to work. This feature

is certainly possible to implement but has proved troublesome in the frame of the project. So, in

a final effort to help the user distinguish homes and structures in the table below, a visual key

was added on the left side bar that can help the user reasonably deduce which attributes belong to

which object (see Figure 9).

Figure 9: Viewer Mode with Subdivision Saved and Attributes Visible

 One may notice that in comparing Figure 7 and 9, there is a slight offset in the

positioning of the houses. While not drastic in this particular example, the oddity is rooted in the

same limitation of jQuery previously mentioned. As the position of the object in CSS is pulled

from the builder page to reproduce in the viewer page, any positioning errors become readily

apparent in the viewer. As stated, each object appended to the initial place of the last child in a

parent element, regardless of whether that last child has since moved. Each object appended

though has a relative top and left CSS position of zero, which resulted in out of bounds and

displaced positions. The subdivision is saved in the database and is available for viewing until

the table is emptied. Much of the remaining time was spent testing and finding different ways to

break the application, and then address said ways.

 While not the most functional design, this implementation was chosen due to time

constraints after committing to a certain design path. An alternative path to address the jQuery

positioning problem was considered where the frame would instead be composed of a grid of

divs that objects could jump between. This would take some of the issues away with the offset of

saved objects. Considerations were also made to do some of the front-end design with C# Razor

rather than JavaScript, but documentation was much scarcer and the technology less adopted.

RESULTS

The final product came out to mostly everything the specifications envisioned, minus the

profile system and un-editable saved subdivisions. The map builder and front end is relatively

robust, well-designed, and very functional. The database back end is very limited but serves its

purpose with room to grow. While it is only one piece of the network of epic proportions planned

in the proposal phase, the subdivision builder serves as a solid foundation that all future

components can branch from. For now, building a subdivision online and saving it is finally a

reality.

CONCLUSION

The Subdivision Builder is truly just the first chapter in a huge undertaking with

tremendous potential for development and capitalization. It does serve a niche purpose for HOA

members not currently available and does so reasonably well. Subdivisions can be designed and

saved in an interactive way with ease of access to all. In order to realistically deploy and market

the application though, the Subdivision Builder will need a much larger back end focus, as well

as fine tuning to the positioning system.

REFERENCES

1.FreeAdvice Staff. “What Is a Subdivision?” FreeAdvice, real-estate-law.freeadvice.com/real-estate-

law/zoning/subdivision.htm.

2. Debbie Braccio (Realtor at McColly Real Estate), interviewed by Jacob Darabaris via phone, September 24 2018.

3. Tanya Moffit (President of the HOA at the Preserve), interviewed by Jacob Darabaris via phone, September 10

2018.

4. Derek Hoots (Builder for Nantucket Cove), interviewed by Jacob Darabaris via phone, September 20 2018.

BIOGRAPHY

 Jacob Darabaris is a man with more creativity than he can possibly express through his limited means. He

does not enjoy programming, rather he moderately enjoys what he can achieve through programming. The next

chapter of his life starts with a Software Engineering position at Raytheon in Indianapolis this Summer. With a

steady stream of income, he intends to expand on the small but considerable success he has experienced as a

seasoned computer technician in college and officially launch his own computer repair and refurbishing business

online. Other notable plans include self-writing and recording a metal musical album; he has about 10 published

songs to gus name, but nothing incredibly notable or in this genre. And in regard to actually using his degree he will

be repaying the next few years, he hopes to produce a 3D video game with a small team of friends, and handle

everything internally including character and map design, music, physics, and the crux of the actual programming

functionality. He is sure the experience will be most akin to this one—he has no idea what he is getting into.

