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ABSTRACT: 
 

Any organization has many different data inputs. They receive mail, invoices, and many 

different types of documents. The project aims to help those organizations manage their data by 

providing a tool to extract useful information. The tool is intended to extract data from any 

document. It needs to be able to take text files and allow the user to identify patterns. After a 

pattern is identified the tool uses this pattern to extract data from any document that has the 

same pattern.
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INTRODUCTION: 
 

 

In the developer’s work as a database designer, he often runs into many unstructured 

documents that contain useful information. He often had to study those documents and create 

parsers to extract useful information. This is a process that is redundant and wastes a good 

amount of time. This motivated the idea of creating a tool that would make this process easier 

and universal for any type of document. 

To solve this problem, we notice in every text document there are patterns that can be 

found. Those patterns tell us where to find useful information. For example, in this document, 

you can clearly identify where the title is, the name of the project engineer, where the 

introduction paragraph starts and much other useful information. This project allows the user to 

identify those patterns by drawing rectangles around useful information on the text file.  

Moreover, they can specify which pieces of data go together and export the parsed 

information to a database. In other words, the user specifies a grouping of parsed values. The 

tool then creates new instances for each set of values that define this group and stores them in a 

structured format.



PROBLEM STATEMENT: 
 

 

Organizations create and receive many documents. These documents contain important 

pieces of information, but they are not structured. For example, an organization might receive 

invoices from a vendor. These invoices contain useful information such as items received and 

prices. If this organization wants to know the total amount of money they paid this vendor, 

someone must go back and read all those documents or structure them in a way that a program 

can analyze them. If they wanted to link this information to other information that they have, 

they would have to structure all their data in a uniform format. In other words, they would have 

to use a database to store their data and insert the information from those invoices into the 

database. 

Structuring unstructured documents is time-consuming. Back to our invoice example, a 

solution might be creating a program that can understand that invoice structure and insert the 

needed information to a database, but it will not be a universal solution. If another vendor sent 

invoices that have a different format the first solution will not work. Also, creating a specific 

solution for every new text structure can be time-consuming. Thus, a universal extraction tool 

is needed. 

SPECIFICATIONS AND REQUIREMENTS: 

 

The program should allow users to create parsers for documents. They do so by 

identifying patterns in unstructured text files to extract useful data. Allow the user to define 

entities that correspond to database tables. Those entities are defined by what parsed data go into 

them and what entities they are linked to. Created parsers should work for any document of the 

same format. 



The program should allow the user to select a list of documents and a parser. The 

program then should use the parser to parse out all the information. After the information is 

parsed it should be stored in the database. 

The program should be written in C#. The interface should be a WPF that allows the user 

to load/create parsers, define entities, identify text patterns, and select a list of documents to be 

parsed.  



DESIGN APPROACH: 
 

 

The project consists of three parts. The first part is the interface. It is responsible for 

loading example text files, creating new parsers, parsing, and getting a connection string to a 

database from the user. The second part is parsing data from documents. It parses the text and 

creates entities with the needed values from the text. And the last part is managing the database. 

It establishes a connection to the database, creates tables if needed and inserts values into them. 

The interface follows the Model–View–ViewModel (MVVM) design pattern. The model 

is the parser in this project. The view contains the graphics-related functions. The ViewModel is 

an intermediate that transfers signals between the model and the view. 

The view is responsible for allowing the user to draw on the loaded text file. Determine 

what type of drawing was made and receive the needed information. It then translates the 

coordinates of the drawing into string indexes. It then forwards that information to the 

ViewModel.  

The ViewModel holds an instance of the parser. It receives messages from the view and 

updates the parser. It also forwards the changes that the parser made to itself to the view to 

update taps and lists for the user. 

The parser is a structure of rectangles following the composite design pattern. The whole 

text file is a base rectangle and the user draw concrete rectangles inside of it to highlight data. 

Each rectangle has a position relative to its parent. An enclosed list of rectangles that represent 

rectangles inside of it. A remainder rectangle that represents the remaining portion of text that is 

below this rectangle. An Entity name that this rectangle represents and an entity id if the 

rectangle had already been inserted to the database. 

A rectangle can extract data by parsing all the enclosed rectangles, and the remainder 

rectangle. If it has an entity name, the rectangle creates a database manager instance and inserts 



the data. If its parent has an entity name it grabs the parent’s id and sends it to the database 

manager to be used as its parent in the database. A rectangle parses a text file by asking all its 

enclosed rectangles to parse and the remainder rectangle also. 

There are three concrete types of rectangles. A value rectangle which is the most straight 

forward. It has a name and value. It overrides the base rectangle’s parse function and finds its 

value from its relative position to the parent. It can copy itself by creating a new instance with 

the same name. 

An ID rectangle is used only for the star rectangle. A star rectangle is a portion of the text 

file that has a variable length. It must have a pattern that repeats and an end identifier. A 

repeating pattern is a base rectangle that will repeat until an end identifier is reached. The end 

identifier is a base rectangle that must contain an ID rectangle. An ID rectangle has a name and 

can determine if at its relative position the contained string is the identifier.  

The last part of the system is the database manager. It establishes a connection to the 

database. It inserts data that it receives from rectangles to the database. The insert function can 

either be an insert without a relationship to other tables or an insert with relation to a specific 

table with an id to a row in that table. 



 

Figure 1 Parser Design 

  



THIRD-PARTY SUBSYSTEMS: 
 

 

The system relies on MySQL for creating a default database. “MySQL is the world's 

most popular open source database. Whether you are a fast growing web property, technology 

ISV or large enterprise, MySQL can cost-effectively help you deliver high performance, scalable 

database applications.” [1]. 

 

DESIGN TRADEOFFS: 
 

 

Initially, the plan was to use formal languages to parse. The parser would consist of a 

sequential list of identifiers and attributes that represent static identifiers and named values. This 

was very successful in parsing data reliably and covered many more cases. The problem with it 

is that it is very difficult to work with. It would require a user that is very familiar with formal 

languages. Even with a good understanding, it would take a significant portion of time to build a 

parser. Thus, drawing rectangles was much more preferred. It covers most cases and can be used 

by any person with a simple understanding of their organization. 

 

 



Result: 
 

 

The project works as a proof of concept. It successfully allows the user to load an 

example document to create the parser. Users can highlight information on the document by 

drawing rectangles. They specify the type of rectangle wither it was a value, variable size 

rectangle, or a new entity. The information is then parsed and stored into a local MySQL 

database.  

Entity mapping is very minimal. This makes the project do only half the work. The data 

is stored in a more structured form. After that, the user needs to export the data in the database 

into a better-structured database. 

 

Figure 2 A use case example 



 

 

CONCLUSION: 
 

 

The project has a lot of potential. Creating a parser using this tool takes minutes. It will 

allow big organizations to transform their old unstructured data in an acceptable period. The 

project still needs further development. Currently, parsers are not stored which makes it really a 

proof of concept. Users would not go through the trouble of making the parser every time. More 

importantly, better entity mapping needs to be implemented. Mapping the customer’s database 

exactly would save a lot of time. They would not have to go through the trouble of structuring 

their unstructured documents and then restructuring the new structure. 
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