

Trinity College Fire Fighting Robot Competition

Conner Sheets – Electrical Engineering

Jared Sutphin - Electrical Engineering

Project Advisor: Dr. Blandford

Trinity College International Robot Contest

Hartford, Connecticut

April 13th, 2019

Acknowledgements

 We would like to thank several people for helping us along the way through our senior
project. The people we would like to thank are: Jeff Cron, Dr. Howe, Dr. Blandford, Dr.
Mitchell, and Mitch Steinkamp. We would like to thank Jeff for attending the competition with
us, answering our endless questions, and always willing to help with anything needed; Dr. Howe
for constantly encouraging us and supporting us through the entire project with answers to our
electronics questions; Dr. Blandford for advising us and supporting our project through all
programming questions; Dr. Mitchell for helping us with miscellaneous questions regarding our
project; lastly Mitch for supplying the project with high quality springs so our line sensors could
be used effectively and would have shock absorption.

Table of Contents

I. Introduction

II. Statement of Problem
A. Robot Inspection Table
B. Control Panel Requirements
C. Trial Runs and Layout Explanation
D. Breakdown of Scoring

III. Client Requirements
A. Dimensions
B. Power
C. Tasks
D. Robot

IV. Project Design
A. Microprocessor Selection
B. Sensor Selection
C. Additional Components
D. Printed Circuit Board
E. Power Planning
F. 3-D Print Designs
G. Concept Design
H. Bandpass Filter Design
I. Other Project Constraints/Considerations

V. Results
VI. Costs
VII. Conclusion and Recommendations
VIII. IEEE Safety Standard Considered
IX. References

List of Figures

1. Level 1 Maze with Dimensions
2. Level 2 Maze with Possible Rug Locations
3. Level 3 Maze Orientation
4. Infrared Proximity Sensor Short Range
5. SparkFun Electret Microphone Breakout
6. RedBot Line Sensor

7. Different UVTron Flame Detectors
8. Pololu Motor and Dual Motor Driver
9. Printed Circuit Board Design
10. Chassis Design
11. UVTron Cover
12. Shock Absorption Spring and Line Sensor Holder
13. Bracket Handle and Control Panel
14. Fan and UV Sensor Mount
15. Start Room Software Flow Chart
16. Maze Exploration Software Flow Chart
17. Extinguish Flame and Return Home Software Flow Chart
18. Hardware Block Diagram
19. Frequency Response/ Coefficients of Digital Bandpass Filter

List of Tables

1. Possible Operating Modes and Mode Factor
2. Room Factor Breakdown
3. Possible Penalty Points
4. Travel Budget
5. Robot Budget

Appendices

A. Bandpass Filter Octave Script
B. Commented Code Used in Project
C. Project Schematic
D. Finished Robot Pictures

I. Introduction

With today’s technology why are we still risking countless firefighters’ lives to run into

burning buildings, put out fires, and save lives? Firefighters are at constant risk of being burned,

becoming trapped, inhaling smoke, and so many more things that could be avoided. An

autonomous robot being the first responder to a fire could greatly reduce the risk of losing human

lives. The goal of the Trinity College Fire Fighting Robot Competition is to create an

autonomous robot that can navigate around a replica house to search for sources of fire and

extinguish them. To further replicate real life scenarios, the competition requires the robot to be

able to detect a tone like a fire alarm, avoid obstacles, and maneuver on different flooring. While

the competition is not creating the exact model that would be used in real houses, it creates a

small-scale replica that serves as a proof of concept to an actual autonomous home firefighting

robot one day. The Trinity College Fire Fighting Home Robot Competition is the first step in the

direction fighting fires with autonomous robots that will allow us to save lives without risking

lives.

II. Statement of Problem

The Trinity College Home Fire Fighting Robot competition has three different levels of

difficulty that the robot will be tested in. The robot may only progress onto the next level by

passing the previous trial and by not exceeding the five trials allotted to each team for the

competition. If the robot fails to recognize the frequency to start or if the robot begins

prematurely moving, that trial will be recorded as a failure. Each team may do a max of three

trials on Saturday or Sunday.

A. Robot Inspection Table

Before beginning any trial, each robot must pass inspection at the robot inspection table.

The robot inspection table will be checking to ensure the following parts of the robot are

compliant with the competition guidelines. The robot must pass size inspection by fitting into a

bounding box, which has a base of 31 x 31 cm square and a height of 27 cm or

(12.2 in x 12.2 in x 10.63 in)(Base x Width x Height). Each robot must operate untethered and be

powered within its chassis. Robots can use air, inert gas, water, mist spray, or other mechanical

methods to extinguish the flame. The inspection will ensure no robot is using any type of powder

extinguishers. Robots must have a carrying handle for judges to easily transport the robot

without damaging the robot in any way. Direction of movement must be signaled by an arrow on

top of the robot. Microphones for detecting the 3.8 kHz +/- 13% start frequency played by

judges must be visible on the top surface of the robot and easily accessible. The microphone

must also have a blue background and clearly be labeled by the abbreviation MIC. Lastly, the

robot inspection table will be ensuring each robot is conforming to the rules and guidelines of the

competition.

B. Control Panel Requirements

Robots are required to have a control panel on the handle in a horizontal orientation. The

panel must include the checkpoint LEDs, kill motor plug, microphone, and arrow indicating

direction of movement. A main power switch must be included in the robot design somewhere

not on the control panel in case of an electrical failure. The checkpoint LEDs required in the

control panel are the blue sound detect LED, red flame detect LED, and green video detect LED.

The blue LED is supposed to illuminate when the correct frequency sound is detected signifying

the start of the robot’s trial. The red LED is supposed to illuminate when the robot has detected

the flame and turned off after the flame has been extinguished. The last component required in

the control panel is the kill motor plug that allows for judges to easily stop the robot in case of

emergency.

C. Trial Runs and Layout Explanation

After the robot has passed all requirements at the robot inspection table, it will be allowed

to start a trial at that difficulty level. All robots are required to start at the first level for the

Trinity College Fire Fighting Robot Competition. Level 1 is a 244 cm x 244 cm maze that is

supposed to represent a simple model of a house with high-contrast floors and walls. Robots

must not rely on precise dimensions because measurements for the maze can have up to a

tolerance of 2.5 cm. All hallway widths and door openings are 46 cm wide. The doorways are

marked by white tape on the floor that goes across the entire door opening. The only obstacle

present for Level 1 of the competition is a dog obstacle that will block a hallway. Robots are not

allowed to touch the dog and must find another hallway to maneuver around the maze. The robot

will be placed in a 30 cm diameter solid white circle for the start of the trial. To successfully

complete Level 1 the robot must autonomously maneuver through the maze and extinguish the

flame in under 3 minutes. The layout for the Level 1 maze is shown in Figure 1.

Figure 1: Level 1 maze with dimensions [1]

After successfully completing Level 1, teams may choose to progress on to the Level 2

maze. Level 2 is meant to mimic a more realistic house with different types of flooring and other

decorations. Level 2 has four different potential configurations but relatively similar. The maze

will now have rug placed in some or all the areas shaded in Figure 2. The robot must be able to

navigate through the house over different types of flooring. The rug will be 1 cm thick and each

maze will have different colors/locations of rugs. Level 2 also has wall decorations such as

pictures, tapestries, and mirrors. These wall obstacles will not stick out more than 1 cm. The

second level has some similarities with Level 1 like the dog obstacle and the same goal of

finding the candle flame and extinguishing it. Level 2 will be considered a success if the robot is

able to autonomously navigate through the maze, overcome obstacles, and put out the fire in

under 4 minutes.

Figure 2: One possible Level 2 orientation with possible rug locations [1]

After successfully completing Level 2, teams may choose to attempt Level 3. Level 3

attempts to add another level of difficulty by incorporating search and rescue. Level 3 is made of

two Level 2 mazes that the autonomous robot must navigate through avoiding the same obstacles

as Levels 1 and 2 such as dogs, furniture, mirrors, rugs, and paintings. The robot is required to

use visual recognition to find a baby trapped in a crib and transport it out of the maze then come

back and extinguish an unknown amount of fires. The two Level 2 mazes are connected by a 1 m

hallway that can have a maximum pitch angle of 15 degrees. To be successful on Level 3 the

robots must first save the baby, then extinguish all the candles, and lastly return to the start pad

before 5 minutes is up. A full breakdown of the rules and requirements for the competition can

be found at the Trinity College Fire Fighting Home Robot’s webpage [1].

Figure 3: Level 3 maze orientation [1]

D. Breakdown of Scoring

The teams get five trials to try and complete all the challenges presented in the different

levels. The final score per trial is calculated based on the Actual Time (AT) the trial takes the robot

to complete, the Mode Factor (MF) used in the run, Room Factor (RF), and Penalty Points (PP).

Mode Factor (MF) is the product of all the Operating Modes (OM) used from Table 1. Room

Factor is used to adjust the Actual Time based on the amount of rooms searched before fire is

found. Trial Score (TS) is the Actual Time with the addition of Penalty Points from Table 3. The

Operating Score is calculated by multiplying the Trial Score, Mode Factor, and Room Factor. The

equation used to calculate each trials score is:

(𝑇𝑇𝑇𝑇) = [(𝐴𝐴𝐴𝐴) + (𝑃𝑃𝑃𝑃)] ∗ (𝑀𝑀𝑀𝑀) ∗ (𝑅𝑅𝑅𝑅)

Table 1: Possible Operating Modes for Mode Factor

Operating Mode Multiplier Short Description
Arbitrary Start 0.80 Robot will be started in one of the four rooms

without fire and facing a random direction
Return Trip 0.80 After extinguishing flame robot returns to the start

location
Non-Air

Extinguisher
0.75 Robot uses an extinguishing method other than fan or

blower
Furniture 0.75 Obstacles replicating furniture can be placed in the

rooms
Candle Location
Mode(Level 1)

0.75 Candle can be placed anywhere within the room and
no white circle surrounding it on the floor

The multipliers we attempted from Table 1 above at the competition were the Arbitrary

Start, Candle Location Mode, and Return to Start.

Table 2: Room Factor Breakdown

Number of Rooms Searched Multiplier

1 1.0

2 0.85

3 0.5

4 0.35

The room factor is intended to adjust the actual time taken per run based on the amount

of rooms the robot must search before finding the flame.

Table 3: Possible Penalty Points

Penalty Name Points Added Short Description
Touching Candle 50 Any robot that touches the candle or base will have 50

points added to that trial’s time score
Continuous Wall

Contact
1point/2cm Robots that are in continuous contact with a wall will

have a point added per 2cm
Kicking the Dog 50 Robots must not move the dog obstacle more than 1cm

Penalty points are added to the Actual Time(AT) of any robot that performs any of the

possible actions in Table 3 above.

III. Client Requirements

A. Dimensions

i. Fit in a box with a base 31 x 31 cm square and 27 cm high

B. Power

i. Draw less than 10 A from a single US-standard 15-amp outlet

C. Tasks

i. Be self-controlled

ii. Start at 3.8 kHz frequency

iii. Navigate the arena without leaving anything behind or causing damage

iv. Identify a candle before extinguishing

v. Extinguish the candle within three minutes(Level 1) and four minutes(Level 2)

D. Robot

i. Contain a control panel

a. Turn on a red light only when flame is detected

b. Turn on a blue light only when sound activation is detected

c. Have a kill motor plug that removes power from the robot’s sensor,

control and drive systems

ii. Have a microphone

a. Located on the top of the robot and accessible from above

b. Labeled “MIC” on a blue background

iii. Have a durable carry handle

a. Have an arrow pointing in the start direction of the robot

iv. Have a method of extinguishing the flame

v. Have a main power switch not on control panel

IV. Project Design

A. Microprocessor Selection

The STM32F446RE board [3] will be the brain of the robot containing the maze

navigating and firefighting program. This microprocessor was chosen due to its speed and

versatility to be used within almost any project. Both team members had experience using this

board before and understood how to maneuver the data sheet to program on it. The versatility

will allow the different sensors to be controlled by one microprocessor. The processor has three

ADC ports, two of which have the capability of running up to 16 different channels. This would

allow us to use all the analog sensors we had planned and have room for extra if needed.

B. Sensor Selection

The next task of this project was deciding the way we wanted out robot to function within

the maze and then to begin picking sensors to allow us to implement that functionality. Based off

our design to implement a right wall following algorithm for the main navigation of the maze we

knew we were going to need some distance sensors. Upon researching and testing distance

sensors we discovered the best choice for our design was going to be the IR Proximity Sensor

Short Range – Sharp(Figure 4 below). These sensors were chosen due to their short-range

capabilities of 4cm to 30cm, whereas alternatives were not accurate at such low distances. The

other main deciding factor was due to their cost being low compared to alternative proximity

sensors. Our project design implemented two of these sensors on the front of the robot for

checking for potential obstacles or obstructions and two on the right side for implementing the

right wall following algorithm.

Figure 4: Infrared Proximity Sensor Short Range – Sharp GP2Y0A41SK0F [2]

The robots are required to have sound detection capabilities to start upon the detection of

a 3.8 kHz start tone. Upon looking into microphones, we bought a simple analog electret

microphone with amplifier breakout board from SparkFun(Figure 5 below). The filter we

implemented with this microphone was a digital bandpass filter to simplify the hardware design

and decrease any additional purchases.

Figure 5: SparkFun Electret Microphone Breakout [3]

 The rooms within the maze are represented by white tape lines on the floor at the

doorways. To signal to the robot that it had found a room we needed a way to detect the change

from dark black flooring to white tape. To accomplish that we chose to use two-line sensors

mounted on the bottom of the robot. The line sensors we chose for the robot were the RedBot

Line Sensors from Robot Shop, as seen in Figure 6 below, due to their low cost.

Figure 6: RedBot Line Sensor [4]

 The flame detection portion of this project required the implementation of two different

sensors. The initial detection of the flame within a room was done using a UV-Tron sensor such

as those shown in Figure 7 below. The problem we hit with using this single sensor for the flame

detection was there was no way to hone in on the actual location of the flame. To solve this

closing in on flame problem we implemented two analog UV sensors that had adjustable

sensitivity on the sides of our motor with propeller. We set up one of the sensors to be extremely

sensitive and the other was set up to be only tripped when within several centimeters of a flame.

Figure 7: Different UV Tron Flame Detectors [5]

C. Additional Components

For the driving power within the robot we decided to use two motors with wheels

attached to the shaft along with two ball caster wheels to keep the robot balanced while in

motion. The motors we chose to use were the Pololu 12V, 100:1 Gear Motor in combination

with the Cytron 10A Dual Channel DC Motor Driver, both of which can be seen in Figure 8

below. We chose these motors due to easily controllable max RPM, not too large for contest

requirements, and price was comparable to alternatives.

Figure 8: Pololu Motor and Dual Motor Driver [6] [7]

D. Printed Circuit Board

To help decrease the amount of wiring on the inside of the robot we decided to design a

printed circuit board that would house most of the connections necessary for our robot. The

design of the printed circuit board is just connections for all the distance sensors, UV sensors,

line sensors, motors, extinguisher fan, and power nodes for the 5 and 12V sources. The design

for our printed circuit board can be seen below in Figure 9.

Figure 9: Printed Circuit Board Design

E. Power Planning

After the sensors and driving power for the robot had been decided the next decisions in

the design were how to power the robot. All our sensors and microprocessor needed 3.3 – 5V

supply while our motor driver needed 12V. After testing different setups, we decided the best

solution was to have two power sources along with two buck converters to step down the

voltage, as well as, add some safety to the chance of supplying too much current. The two

sources we decided to use were a 9V battery and a LiPo battery that fully charged can supply

around 12.5V. We chose to use a rechargeable 9V battery and LiPo to help lower the cost of the

robot. The 9V battery would be stepped down by a buck converter and used to give the

microprocessor and our sensors their own dedicated battery to avoid any spikes caused by the

motors. The LiPo battery would be used to supply 12V directly to the motor driver and stepped

down to 5V to be used for the extinguisher fan, H-bridge power, and dual motor driver power.

The use of two sources seemed to decrease the amount of potential sensor error from power

spikes or drops.

F. 3-D Print Designs

We decided to try and 3-D design and print several of our parts for a couple reasons.

They could be easily altered or improved, the materials needed to print were relatively cheap,

and the plastic was durable enough to withstand slight collisions during practicing. The first part

of the robot we 3-D designed was the chassis to house all our robot’s components while also

allowing us to implement the program plan we had planned. To utilize the right wall following

algorithm we chose to implement we needed to place two distance sensors on the right face of

the robot. Along with those right-side sensors we decided to best avoid obstacles and walls we

would need two distance sensors on the front face. The front distance sensors would have one

directly in the center and the other off to the right. We chose this layout, so the middle sensor

would allow us to detect the dog obstacle whereas if either was tripped it would signal a wall was

found. The distance sensors for right wall following were placed so that one was located towards

the front face and the other directly at the back. This set up would allow us to detect when the

robot was fully within a doorway or hall before turning. The other design considerations when

creating the chassis were to pull the distance sensors slightly inside the body to give them some

shielding from potential interference. Holes were placed so the motors and ball casters could be

mounted directly to the chassis. The chassis design can be seen in Figure 10 below.

Figure 10: Chassis Design

Upon testing the UVTron we began to quickly realize the sensor was extremely

sensitive and would be tripped by almost any small flame or spark inside of the room. To

solve this issue, we decided to design a shield to cover up most of the sensor other than a

small area in front of the sensor. The design for this shield can be seen in Figure 11 below.

The shield helped make the sensor less sensitive to the point it would only be tripped when

the robot had entered the room containing the fire.

Figure 11: UVTron Cover

The line sensors picked for our robot had a very short range and had to be almost

touching the floor. The issue with having them that low was the possibility of breaking the

sensor when the robot encountered a rug or small bumps on imperfect maze floor. We

decided to try and design a rounded holder on the bottom of our robot and add springs

between the line sensor holder and chassis to give the sensor shock absorption which can be

seen in the left picture below. The newest curved line sensor holder can be seen in the right

image below.

Figure 12: Shock Absorption Spring and Line Sensor Holder

The competition requires each robot to have a sturdy carrying handle that the judges can

use for moving around the robots without risking damage. We decided to construct a handle out

of aluminum brackets that would attach to the bottom side of the robot. These would then run up

the sides of the robot to a height 2cm above the max height the propeller blade could reach.

These brackets would then attach to a 3-D printed control panel we designed to meet the

competition requirements. The design of the handle and control panel can be seen in Figure 13

below.

Figure 13: Bracket Handle and Control Panel

The last component we designed was a piece to attach to the front of our chassis to hold

our extinguishing fan and the two UV Sensors for closing in on the flame. This piece was

designed with the same considerations made when designing the UVTron cover to basically help

decrease the sensitivity of the UV Sensors, so they would not be tripped as easily. We created

this piece because the original plan of using a servo motor was causing issues with our power

and messing up other sensors. This piece can be seen in Figure 14 below holding the

extinguishing fan and UV Sensors.

Figure 14: Fan and UV Sensor Mount

G. Concept Design

The autonomous robot will be signaled to start by a 3.8 kHz tone played into the robot’s

microphone. After the robot has been signaled to start the function to exit the start room, which

is outlined in Figure 15 below, will be executed. This function begins with the robot spinning in

a circle while taking a distance measurement with the front center distance sensor every eighteen

degrees. After the robot has spun a full circle it will spin back to face the direction that the

shortest distance was measured. Next the robot will progress forward until the robot is within ten

centimeters of the wall and turn left. Using the two distance sensors on the right face the robot

will align on the wall and then begin right wall following while searching for a line below. Once

the line had been found it meant the robot was at the doorway of the start room and ready to

progress on to the maze exploration stage of the software.

Figure 15: Start Room Software Flow Chart

Once the robot has exited the start room the robot will enter the main portion of the

software which is the maze exploration. This maze exploration is outlined in the software flow

chart below in Figure 16. The robot will continuously move forward adjusting the left motor

speed to keep the front right distance sensor within ten to eleven centimeters. If the distance

sensor is further than eleven centimeters the left motor speed is increased to push the robot closer

to the wall or if the distance sensor is less than ten centimeters away from the wall the left motor

is slowed to pull the robot away from the wall. While continuously adjusting the speed of the

motors to stay close to the right wall the robot is checking the front distance sensors as well. If

one of the front distance sensors reads less than ten centimeters the robot has found an obstacle

and will turn left before progressing forward again. The last thing the robot is checking for is the

right distance sensors suddenly reading a distance greater than twenty centimeters. If this

happens it means, there is either a door way or a hallway and the robot will turn right before

slowly moving forward while checking the line sensors. After the robot has moved forward

about five inches if no line has been found the software will go back to the right wall following

exploration. However, if a line has been found the robot will increment the variable(LineCount)

we are using to keep track of lines found and execute a check of the room utilizing the UVTron

to see if a fire is present. If no fire is detected the explore maze loop will be reentered, but if a

fire has been detected the robot will enter the room and move into the fire extinguishing section

of the code.

Figure 16: Maze Exploration Software Flow Chart

 Once the robot has found the room containing the fire it will begin to execute the

software loop outlined below in Figure 17. This is also the point the software determines the

amount of lines it must cross to return home by subtracting 5 minus our variable(LineCount) we

used to keep track of lines found. We stored the difference in another variable(ReturnLineCount)

to use when navigating back to start room. The robot will spin taking a scan of the room using

the sensitive UV Sensor to locate the location of the candle flame. After locked onto the

direction of the flame the robot will slowly progress forward and check for the two cases that

would signal that the flame is within extinguishable range which are: non-sensitive UV Sensor is

being tripped or the front middle-distance sensor is being tripped. This loop repeats until the UV

Tron is no longer registering that there is a fire present in the room. Once the flame has been

extinguished the robot executes the same loop that it did when leaving the original start room.

After the robot has left the room containing the fire it will continue the right wall following

searching for lines and decrementing the ReturnLineCount variable each time one is found until

the variable equals zero. When the variable equals zero it means the robot has found the line in

the doorway of the original start room. The robot then crosses over the line into the room and

then stops signaling the end of the trial.

Figure 17: Extinguish Flame and Return Home Software Flow Chart

The hardware block diagram in Figure 18 represents a simplified description of what the

project contains as far as main components. The more in-depth schematic can be found in

Appendix C. The robot’s main chassis houses most of the components such as the range finder

sensors, the motors with wheels, 9 and 12V batteries, and most of the wiring for the robot. The

main chassis is also attached to a reinforced handle for easy transportation of the robot. The

handle contains the control panel with a kill motor plug, microphone, and the status LEDs such

as: sound detect, and flame detect. The robot has a front portion of the chassis that contains two

UV sensors and extinguisher motor/propeller combo for adjustable flame extinguishing

direction. The last components are two ball caster wheels to help the robot move and remain

upright while being propelled by the two-back motor/wheel combos.

Figure 18: Hardware Block Diagram

H. Bandpass Filter Design

One of the project requirements is that the robots only startup upon the detection of a

3.8kHz ± 13% start tone. This tone is meant to resemble a fire alarm. To accomplish this

requirement the robot needed a filter for the microphone. We could have used either a digital or a

hardware filter but upon further thought we chose to implement a digital filter due to no extra

required components and easily adjustable if needed at the competition. We used Octave to find

the required coefficients to plug in for the code to implement the digital filter. The filter that we

designed was a sixth order elliptic bandpass filter. The Octave script can be found in Appendix A

and the plot of the frequency response with coefficients generated can be seen in Figure 19.

Figure 19: Frequency Response/Coefficients of Digital Bandpass Filter

I. Other Project Constraints/Considerations

The economic constraints for this project were limitations set by the budget given by the

school for the funding of the project. All the components needed for the project and materials

used in fabrication were within the allotted budget. Parts such as the range finders, motors with

drivers, UV Tron, wheels, PCB, microphone, and contest entry fee all remained within the

financial constraint given to the project by the school.

The environmental constraints were the power consumption of the robot due to the power

being used is coming from non-recyclable batteries and the materials used for the robot could be

wasteful. For this reason, the robot was made as power efficient as possible to have the least

negative impact on the environment as possible. The waste of materials was minimized by using

rechargeable batteries and thoroughly planning the design of the chassis to avoid multiple trial

prints resulting in wasted material.

Manufacturability and sustainability were considered in the design and implementation

portions of the project. The economic constraints led to a design that has a definite price for each

robot in the case of manufacturing and price may be subject to slight changes in the case of bulk

ordering components. Manufacturability was also considered when designing the portions of the

project that are 3-D printed. These parts were thoroughly planned before printing to ensure less

trial prints as well as using the most material efficient design.

The ethical portion of the project in all stages is introduced with the obstacle of the dog.

Instead of potentially harming the dog by trying to pass through, or potentially over, the dog our

robot finds an alternative route to ensure no harm is done to a living creature. The contest

introduces the ethical constraint of prioritizing human and animal life over losing physical

possessions.

The motors for this robot that are attached to the wheels have the potential of being

dangerous due to their maximum RPM. The robot could potentially start driving around very

quickly and pose a health and safety risk if the robot runs into someone or something. The robot

utilizes accurate range finders for detecting any potential animal, person, or wall in the way to

ensure the safety of all life in the house. The range finders are also used for shutting down the

power to the motors in the situations where the robot is quickly approaching a living creature or

wall. The last precaution to ensure health and safety is a kill switch that is easily accessible on

the top of the robot.

The other safety constraint in the project is the risk of fire. The robot can find and

effectively put out the fire without causing more harm such as spreading the flame using a poor

method of extinguishing or by knocking the candle over. As far as avoiding knocking over the

candle our program is designed to extinguish the flame from as far away as possible. Once the

UV Tron has detected the flame in the room the robot will spin until the UV Sensors have locked

on the flame source to orient the robot to face the flame. Next the robot begins a loop of inching

forward until the distance sensor is tripped or both UV Sensors are tripped meaning the robot is

within extinguishing range. The robot then turns on its drone motor to put out the flame. The

robot will continue this loop until the UVTron no longer detects the flame.

V. Results

 We represented the University of Evansville at the Trinity College Fire Fighting Robot

Competition on April 13th and 14th. The robot passed the initial judges table inspection and was

awarded a participation award for being compliant with all the competition rules and

requirements. On the first day of the competition the gymnasium lights caused lots of

interference with our distance sensors causing us to redesign the program to work even with

random sensor trips. We were successful on our first attempt at level one and accomplished the

arbitrary start, candle location, and return to start multipliers giving us a score of 24.44 for that

level. We attempted level two to round out the first day however the robot got caught suspended

in the air on the ball casters and the wheels were unable to propel the robot. On day two we made

slight hardware adjustments to try and allow the robot to shift off the carpets. We removed one

of the spacers on the back-ball caster and shifted it back more on the robot chassis to allow the

robot to rock back and forth more. Trial three we managed to completely make it around the

maze and over the carpets but upon entering the room containing the fire the line sensors missed

the line and therefore the robot did not know to check for the flame and was unsuccessful in

putting out the flame. Trial four we were finally successful on level 2. The time for the run was

long because the robot got hung up on the carpet for a while but managed to rock off it. We

accomplished the arbitrary start multiplier for this run giving us a score of 109. Since we had no

visual recognition components we decided to use our last trial on level two again to try for a

lower score. The robot ran into the candle however and failed the final trial. Wrapping up the

weekend our robot placed third in the senior unique division and first out of the North American

senior unique robots. We also placed first in the poster and presentation competition. Final

pictures of the robot can be seen in Appendix D.

VI. Costs

 The budget for this project is broken into two different sections. The first portion of the

budget is travel expenses for the team to be able to travel to the competition. This portion of the

project costs pitched to the Academic Fund Board (AFB). The second part of the budget is for all

the components that the project required. Some portions of the project were reused parts from

around Koch center and from extras of previous robots to lower costs. The total estimated costs

broken down for the travel and robot construction costs can be seen in Table 2. In conclusion the

UE Fire Fighting Home Robot Team has been funded the total $1000 requested for the project

budget and $1853.96 for travel.

Table 4: Travel Budget

Travel (for two)
Description Cost ($)

Competition Registration Fee 90.32
Team shirts 52
Air Flight 1,132.62

Checked Bag 60
Hotel 275.98

Car Rental 68.01
Fuel 30

Poster for Competition 25
LiPo Batteries (if not allowed on plane) 120

Food 60
Total $1,913.93

Table 5 b6: Robot Budget

Robot
Description Cost ($)
Motors (x2) 79.90

Motor Drivers 23.49
Motor Brackets 7.95
Mounting Hubs 7.95

Ball Caster 4.99
Quadcopter Motor 7.99

Wheels 10.90
IR Sensor 49.74

IR Jumper Wire 9.00
Mic 5.95

11.1 V Battery 38.75
XT-60 Battery Connector 7.25

Buck Converter 12.99
Wheels 6.99
Wheels 13.98

UV Sensor 7.89
Line Sensor 5.90

9V Battery Snap 1.30
IR Sensor 9.55

LED Assortment 6.15
IR Jumper Wire 1.50

PCB 55.57
9V 5.99

TRX Converter 6.29
Corner Braces 7.89
11.1 V Battery 48.99

Ball Caster 4.99
Total $490.28

Overall Total = $2,404.21

Received Funding from AFB: $1,853.96

Received Funding from CECS: $1000

Remaining Funding from CECS: $509.72

VII. Conclusion and Recommendations

 As a team we had many successes with this senior project and placed better than we

could have ever hoped at the competition. We managed to get the robot done and attend the

competition through all the setbacks and delays. The team placed third out of the senior unique

division and first out of the North American senior unique robots by points. We were also the

winners of the poster presentation competition with a $200 cash prize.

 Looking back and thinking about what could have been done differently to make

recommendations for potential future teams we thought of a few major things. First the main

problem we had with the robot was the line sensors used to detect the rooms. They had to be too

close to the ground and would constantly clip on the rugs or just completely not see the lines. It

would be best to find a way to function the robot without line sensors or find more reliable ones.

Second our motors were too large and heavy. There are many smaller options that can be used

and improve the robot’s overall speed. Third UVTrons are outdated and we may have been one

of the only teams at the competition using one. Most teams used a pyro sensor instead. Lastly

incorporating a gyro into the robot to help with turning the robot and overall navigation would

make calibration much easier. Instead of just throwing a set number into delays once the motors

are spinning opposite directions to get roughly a ninety degree turn the gyro would allow you to

always turn exactly the amount you want.

VIII. IEEE Safety Standard Considered:

“IEEE C37.14-2002 - IEEE Standard for Low-Voltage DC Power Circuit Breakers Used

in Enclosures”

This standard was considered in the production of the firefighting robot, because by the

competition rules the robot is required to have 78ijjsome sort of kill switch to easily shut down

the robot’s motor function. The easiest way to replicate a kill switch is setting up a circuit

replicating a circuit breaker to shut down all power supply to the motor. A circuit breaker type

circuit will be implemented to act as the kill switch on the robot.

Appendix A

https://standards.ieee.org/standard/C37_14-2002.html
https://standards.ieee.org/standard/C37_14-2002.html

Appendix B

1 #include "stm32f446.h"
2 #include <stdint.h>
3 #include <math.h>
4 #include <stdlib.h>

5

6 /*
7 This is the finished code for the 2019 Trinity College Fire Fighting Robot
8 College Team: University of Evansville
9 Programmers: Conner Sheets and Jared Sutphin
10 Date of Competition: April 13th - 14th
11 */

12

13 void Setup(void);
14 void Tim3Setup(void);
15 void TurnLeft90(void);
16 void TurnRight90(void);
17 void DMASetup(void);
18 void DataToCm(void);
19 void Left_Mtr(signed int speed);
20 void Right_Mtr(signed int speed);
21 void Delay(unsigned int i);
22 void CheckObstruction(void);
23 void ExploreMazeFrontRightSensor(void);
24 void ExploreMazeBackRightSensor(void);
25 void MotorStop(void);
26 void CheckRoom(void);
27 void CheckLine(void);
28 void AlignOnLine(void);
29 void ExitStartRoom(void);
30 void ExitAlignOnLine(void);
31 void AlignAfterTurn(void);
32 void ScanForFlame(void);
33 void FindFlame(void);
34 void Extinguish(void);
35 void LeaveRoom(void);
36 void MicSetup(void);
37 void Start_Sound(void);
38 void Check_Mic_Input(void);

39 void candleInDoorwayCheck(void);
40 uint16_t ADC_Data[8];
41 uint16_t ADC_DataCm[4];
42 uint16_t ClosestWall = 0x32;
43 uint16_t uv = 0, uv2 = 0;
44 int FIRE = 0, count = 0, cMax = 20, yInt, maxY;
45 int x, UV_Tron_Tick = 0, StartSound = 0, ActualObstactle,FrontRight, InRange, Alignable;
46 int ClosestWallDegree, CandleFound = 0, LineCount = 0, ReturnHomeLineCount = 5,

ReturningHome = 0;
47 int ScanDirection = 0, FirstCheck = 0, FalseStop = 0;
48 int SecondCheck, InsideRoom = 1, BreakVariable = 0, RightDelay, LineAligned = 0;
49 int rotationDirection = 0, flameAhead = 0, OffSet = 1, MoveForwardReady = 0;
50 int ClosestDist, DistCheck, TooClose, TooFar, Opening, LineAlignBypass = 0; 51 int main()
52 {

53

54

55 Setup(); //Call Function for setup of the ADC
56 DMASetup(); //Call Function for setup of the DMA
57 Tim3Setup(); //Call Function for setup of Timer3
58 MicSetup(); //Setup all needed registers for Mic Operation
59 ADC1_CR2 |= 0x300; //DMA keeps requesting (DDS) and DMA Enable
60

61

6
2
w
h
i
l
e
(
1
)
6
3
{

64 while(StartSound == 0) //Loop to keep checking mic until correct freq. detected
65 {
66 Start_Sound();
67 }

68

69

70 while(InsideRoom == 1) //calloc function for Arbitrary Start
71 {
72 ExitStartRoom();
73 }
74

75 ADC1_CR2 |= (1<<30); //ADC1 Start for all channels
76 DataToCm(); //Converts AD data from dist sens to cm
77 if(ADC_DataCm[2] <= 0x14) //If Front Right is within Range of a Wall 78 {
79 ExploreMazeFrontRightSensor();//Follow wall with front right Sensor
80 }
81 else if(ADC_DataCm[2] > 0x14) //If Front Right is not within Range of wall
82 {
83 ExploreMazeBackRightSensor(); //Follow wall with back right Sensor
84 }
85 CheckObstruction(); //Function for checking in front of robot 86 }
87 }

88

89 void Setup()
90 {
91 RCC_AHB1ENR |= 0x3F; //Enable GPIOA/B/C Clock Bits
92 GPIOA_MODER |= 0x3F0F; //PA[0,1,4,5,6] are Analog
93 GPIOB_MODER |= 1<<(2*10);
94 GPIOB_MODER &= 0; //UVTron Input Pin
95 GPIOB_PUPDR |= 1<<(2*8); //Pulling up PB8 because

UVTron will pull it low when fire detected
96 GPIOB_MODER |= 1<<(2*14); //UVTron LED Indicator

Pin
97 GPIOB_MODER |= 1<<(2*15); //UVTron LED Indicator

Pin
98 GPIOB_MODER |= 0xF; //PB[0,1] Dist_Sens
99 GPIOC_MODER |= 0xFF; //PC[0,1,2,3] are analog
100 GPIOB_MODER |= 1<<(2*9); //Propeller output
101 ADC_CCR |= 0x30000; //PCLK Divided by 8
102 RCC_APB2ENR |= (1<<8); //ADC1 Clock Enable
103 ADC1_CR2 |= 0x1; //Enable ADC1
104 ADC1_CR1 |= (1<<8); //Scan Mode Enabled ***Page

385 Ref. Manual***
105 ADC1_SQR1 |= 0x700000; // Regular Channel Sequence

Length: 8 for 9 ADCs ***Mic is on ADC2***

106 //SQR1 change above is always 1 less than amount of
conversions

107 ADC1_SQR3 |= 0<<(5*0); //Dist_Sens[0] Front Right
108 ADC1_SQR3 |= 1<<(5*1); //Dist_Sens[1] Front Middle
109 ADC1_SQR3 |= 6<<(5*2); //Dist_Sens[2] Right Front
110 ADC1_SQR3 |= 8<<(5*3); //Dist_Sens[3] Right Back
111 ADC1_SQR3 |= 9<<(5*4); //Dist_Sens[4] UV Sensor
112 ADC1_SQR3 |= 10<<(5*5); //Dist_Sens[5] UV Sensor
113 ADC1_SQR2 |= 11<<(5*0); //Left Line Sensor
114 ADC1_SQR2 |= 12<<(5*1); //Right Line Sensor
115 }
116

117 void Tim3Setup(void)
118 {
119 //GPIO Setup
120 GPIOB_MODER |= 1<<(2*5); //PB5 Output for Direction 1
121 GPIOB_MODER |= 1<<(2*6); //PB6 Output for Direction 2
122 GPIOC_MODER |= 2<<(2*7); //PC7 Set to Alternate Function
123 GPIOC_AFRL |= 0x20000000; //PC7 Set to Alt. Funct. 2 - TIM3 Ch2
124 GPIOC_MODER |= 2<<(2*6); //PC6 Set to Alternate Function
125 GPIOC_AFRL |= 0x2000000; //PC6 Set to Alt. Funct. 2 - TIM3 Ch1
126 GPIOC_MODER |= 2<<(2*8); //PC8 Set to Alternate Function
127 GPIOC_AFRH |= 0x2; //PC8 Set to Alt. Funct. 2 - TIM3 Ch3 128
129 //Timer3 Setup
130 RCC_APB1ENR |= 1<<1; //Timer 3 clock enable
131 TIM3_CCMR1 |= 0x6C6C; //PWM mode output compare 1, preload and fast enable for

Ch1,2
132 TIM3_CCMR2 |= 0x6C;//PWM mode output compare 1, preload and fast enable for Ch3 133

TIM3_CR1 |= (1<<7); //ARPE Pg 526
134 TIM3_PSC |= 15; //16 Mhz/15+1 = 1 MHz
135 TIM3_ARR |= 19999; //PWM Period = (19999 + 1) * (1/1Mhz) = .02Sec
136 TIM3_CCR1 |= 0; //Duty cycle starts at 0
137 TIM3_CCR2 |= 0; //Duty cycle starts at 0
138 TIM3_CCR3 |= 0; //Duty cycle starts at 0
139 TIM3_CCER |= 0x111; //Capture/Compare 1 output enable for Ch1,2,3
140 TIM3_EGR |= 1; //Update generation
141 TIM3_CR1 |= 1; //Counter enabled
142

143 GPIOB_BSRR = 1<<6; //PB6 High (Left Mtr Forward) PB5 Low (Right Mtr
Forward) 144 }

145

146

147 void TurnLeft90(void)
148 {
149 Left_Mtr(-50); //Mtrs turned on in opp directions
150 Right_Mtr(50);
151 Delay(19500); //Delay obtained from testing for 90 degree turn 152 MotorStop();
153 }

154

155 void TurnRight90(void)
156 {
157 Left_Mtr(50); //Mtrs turned on in opp directions
158 Right_Mtr(-50);
159 Delay(19500); //Delay obtained from testing for 90 degree turn 160 MotorStop();
1
6
1
}
1
6
2

163 void DMASetup() //Function for setting up DMA
164 {
165 RCC_AHB1ENR |= (1<<22); //DMA2 Clock Enable Channel 0

Stream 0 or 4 is ADC1 ***Page 207***
166 //DMA2_S0CR Bit 25-27 Chan. Sel. Default to 000 which is

Chan. 0 and SxCR
-> x = Stream #

167 DMA2_S0CR |= (1<<17); // Priority Level High
168 //Set Peripheral Data Size: ADC_DR = 16bits
169 DMA2_S0CR |= (1<<11); // 01 = 16 Bits setting
170 //Set Memory Data Size: Match the Peripheral = 16 Bits
171 DMA2_S0CR |= (1<<13); //01 = 16 Bits
172 //Peripheral Increment Mode or Memory Increment Mode
173 DMA2_S0CR |= (1<<10); //Memory Increment After

Each Data Transfer
174 //Circular Mode ***Page 212***
175 DMA2_S0CR |= (1<<8);
176 //Set Transfer Direction... Want: Peripheral -> Memory
177 //DMA2_S0CR |= 00 in bit 6,7 but defaults to that so

commented out

178 //# of Data Sequences to Transfer: 7 for the Distance
sensors

179 DMA2_S0NDTR = 8; //Number for amount of ADC
Conversions

180 //Link DMA to Peripheral (ADC1_DR)
181 DMA2_S0PAR = 0x4001204C; //The address of

ADC1_DR
182 //Memory Address Register
183 DMA2_S0M0AR = (uint32_t)ADC_Data;// The register is 32

bits so cast to 32???
184 DMA2_S0CR |= 0x1; //DMA2 Channel Enable
185 }
186 void DataToCm()
187 {
188 for(int i=0;i<5;i++)
189 {
190 //Rounded to 50: Data->cm Equations derived using Vref =

3V
191 ADC_DataCm[i] = (17350/ADC_Data[i]) - 0.42;
192 }
193 } 194
195 void Left_Mtr(signed int speed) //This funct. just allows speed of Mtr to be set
196 {
197 if(speed > 0)
198 {
199 GPIOB_BSRR |= (1<<6);
200 TIM3_CCR1 = (uint16_t)(320000.0*speed/100.0);
201 }
202 if(speed < 0)
203 {
204 GPIOB_BSRR |= (1<<22);
205 speed = abs(speed);
206 TIM3_CCR1 = (uint16_t)(320000.0*speed/100.0);
207 }
208 if(speed == 0)
209 {
210 TIM3_CCR1 = (uint16_t)(0);
211 }
212 }
213 void Right_Mtr(signed int speed) //This funct. just allows speed of Mtr to be set
214 {
215

216 if(speed > 0)

217 {
218 GPIOB_BSRR |= (1<<21);
219 TIM3_CCR2 = (uint16_t)(320000.0*speed/100.0);
220 }
221 if(speed < 0)
222 {
223 GPIOB_BSRR |= (1<<5);
224 speed = abs(speed);
225 TIM3_CCR2 = (uint16_t)(320000.0*speed/100.0);
226 }
227 if(speed == 0)
228 {
229 TIM3_CCR2 = (uint16_t)(0);
230 }
231 } 232
233 void MotorStop(void) //Function to cut off the motors
234 {
235 TIM3_CCR1 = (uint16_t)(0);
236 TIM3_CCR2 = (uint16_t)(0);
237 }
238 void CheckObstruction() //Function to check in front of the robot for obstacle 239 {
240 if(InsideRoom == 0) //Set closest range based on where robot is
241 {
242 ClosestDist = 0xA;
243 DistCheck = 10;
244 }
245 else if(InsideRoom == 1)
246 {
247 ClosestDist = 0x8;
248 DistCheck = 6;
249 }
250 if((ADC_DataCm[1] <= ClosestDist) || ((ADC_DataCm[1] <= ClosestDist) &&

(ADC_DataCm[0] <= ClosestDist)))
251 {
252 MotorStop();
253 ADC1_CR2 |= (1<<30);
254 DataToCm();
255 if((ADC_DataCm[1] <= 0xF) && (ADC_DataCm[0] <= 0xF)) //Is wall going Alignable after

turn
256 {
257 Alignable = 1;
258 }
259 else

260 {
261 Alignable = 0;
262 }
263

264 for(int i = 0; i < DistCheck; i++) //Takes 10 trips to try and avoid false obstacle
readings

265 {
266 ADC1_CR2 |= (1<<30);
267 DataToCm();
268 if((ADC_DataCm[1] <= ClosestDist) || ((ADC_DataCm[1] <= ClosestDist) &&

(ADC_DataCm[0] <=
ClosestDist)))

269 {
270 ActualObstactle++;
271 }
272 else if((ADC_DataCm[1] > ClosestDist) && (ADC_DataCm[0] > ClosestDist))
273 {
274 ActualObstactle = 0;
275 break;
276 }
277 }
278 if(ActualObstactle >= DistCheck) //If there truly is an obstacle turn and align if

possible

279 {
280 ActualObstactle = 0;
281 TurnLeft90();
282 if(Alignable == 1)
283 {
284 AlignAfterTurn();
285 }
286 ADC1_CR2 |= (1<<30);
287 DataToCm();
288 CheckObstruction();
289 }
290 }
291 else //No obstacle continue on with Right Wall Following 292 {
293
ActualObstact
le = 0; 294
ADC1_CR2 |=
(1<<30);

295 DataToCm();
296 if(ADC_DataCm[2] <= Opening)
297 {
298 ExploreMazeFrontRightSensor();
299 }
300 else if(ADC_DataCm[2] > Opening)
301 {
302 ExploreMazeBackRightSensor();
303 }
304 }
305 }
306 void ExploreMazeFrontRightSensor(void)
307 {
308 ADC1_CR2 |= (1<<30);
309 DataToCm();
310 if(ADC_Data[4] <= 0x200) //This loop was added at Comp. To try and still see fire

even if a
L

i
n
e
w
a
s
m
i
s
s
e
d
3
1
1
{

312 for(int b=0; b<5; b++) //If the sensitive UV Sensor is tripped Bypass the need to find a
line and begin

313 { //the CheckFlame and FindFlame process
314 ADC1_CR2 |= (1<<30);
315 DataToCm();
316 uv = uv + ADC_Data[4];
317 }
318 uv = uv/5;
319 if(ADC_DataCm[1] <= 0x7)

320 {
321 uv = 0xFFF;
322 }
323 if(uv <= 0x200)
324 {
325 LineAlignBypass = 1;
326 uv = 0;
327 AlignOnLine();
328 LineAlignBypass = 0;
329 }
330 }
331 if(InsideRoom == 0) //If no flame set paramaters for wall following 10-11cm is ideal

outside rooms
332 {
333 TooClose = 0xA;
334 TooFar = 0xB;
335 Opening = 0x10;
336 }
337 else if(InsideRoom == 1) //If no flame set paramaters for wall following 8-9cm is ideal

inside rooms
338 {
339 TooClose = 0x8;
340 TooFar = 0x9;
341 Opening = 0x10;
342 }
343 if(ADC_DataCm[2] <= TooClose) //Robot is getting too close to wall 344

 {
345 Left_Mtr(50); //Slow down left Motor to correct away

from wall

346 Right_Mtr(75); //Leave Right at 75 //Convert to Cm
347 ADC1_CR2 |= (1<<30);
348 DataToCm();
349 CheckLine();
350 }
351 else if(ADC_DataCm[2] >= TooFar && ADC_DataCm[2] <= Opening) //Robot is

getting too far from wall
352 {
353 Left_Mtr(75); //Left Motor Left at 75 to correct

towards wall

354 Right_Mtr(50); //Drop Right Motor Speed to correct
355 ADC1_CR2 |= (1<<30);
356 DataToCm();

357 CheckLine();
358 }
359 else if(ADC_DataCm[2] > Opening) //Front right sensor suddenly jumps to

large distace... Means door or hall

360 {
361 ExploreMazeBackRightSensor(); //Start Following wall off back right sensor
362 }
363 else if(ADC_DataCm[2] > TooClose && ADC_DataCm[2] < TooFar)
364 { //MotorStop is within desired distance
365 Left_Mtr(75); //Set Left to 75% speed
366 Right_Mtr(75); //Set Right to 75% speed
367 ADC1_CR2 |= (1<<30);
368 DataToCm();
369 CheckLine();
370 }
371 } 372
373 void ExploreMazeBackRightSensor(void) //Front Right is out of range use back right 374 {

375 if(ADC_DataCm[3] < 0x8) //Robot too close to wall 376 {

377 Left_Mtr(50); //Slow down left Motor to correct away from wall 378 Right_Mtr(75);
 //Leave Right at

 75 //Keep at 75%

379 ADC1_CR2 |= (1<<30);
380 DataToCm();
381 }
382 else if((ADC_DataCm[3] > 0x10) && (ADC_DataCm[3] <= 0x14))
383 {
384 Left_Mtr(75); //Left Motor Left at 75 to correct towards wall
385 Right_Mtr(50); //Drop Right Motor Speed to correct
386 ADC1_CR2 |= (1<<30);
387 DataToCm();
388 }
389 else if(ADC_DataCm[3] > 0x14)
390 {
391 Left_Mtr(50); //Continue forward slightly to be fully within gap 392 Right_Mtr(50);
393 Delay(10000);
394 MotorStop(); //Kill motor to prepared for turn
395 TurnRight90(); //Turn Right to progress into room or hallway 396 Delay(5000);
397 Left_Mtr(30); //Motors to 30% speed to slowly search for a line or

reattach to wall

398 Right_Mtr(30);

399 for(int i = 0; i < 50000; i++) //Loop to constantly be checking for Line or if
no

line wall follow

400 {
401 ADC1_CR2 |= (1<<30);
402 DataToCm();
403 if(ADC_Data[6] < 0xC00 || ADC_Data[7] < 0xC00) //If either line sensor is

tripped
404 {
405 if(InsideRoom == 1)
406 {
407 ExitAlignOnLine();
408 if(LineAligned == 1)
409 {
410 LineAligned = 0;
411 break;
412 }
413 else
414 {
415 Left_Mtr(30);
416 Right_Mtr(30);
417 }
418 }
419 else if(InsideRoom == 0)
420 {
421 AlignOnLine();
422 if(LineAligned == 1)
423 {
424 LineAligned = 0;
425 break;
426 }
427 else
428 {
429 Left_Mtr(30);
430 Right_Mtr(30);
431 }
432 }
433 }
434

435 else if(ADC_DataCm[1] <= 0xA && ADC_DataCm[0] <= 0xA)
436 {
437 ActualObstactle = 0;

438 for(x = 0; x < 15; x++)
439 {
440 ADC1_CR2 |= (1<<30);
441 DataToCm();
442 if(ADC_DataCm[1] <= 0xA && ADC_DataCm[0] <= 0xA)
443 {
444 ActualObstactle++;
445 }
446 else if(ADC_DataCm[1] > 0xA || ADC_DataCm[0] > 0xA)
447 {
448 Left_Mtr(30);
449 Right_Mtr(30);
450 ActualObstactle = 0;
451 break;
452 }
453 }
454 if(ActualObstactle >= 15)
455 {
456 ActualObstactle = 0;
457 CheckObstruction();
458 break;
459 }
460 else if(ActualObstactle < 15)
461 {
462 Left_Mtr(30);
463 Right_Mtr(30);
464 ActualObstactle = 0;
465 }
466 }
467 }
468 }
469 else if(ADC_DataCm[3] >= 0x8 && ADC_DataCm[3] <= 0x10)
470 { //Wall is within the desired range
471 Left_Mtr(75); //Set Left to 75% speed
472 Right_Mtr(75); //Set Right to 75% speed
473 ADC1_CR2 |= (1<<30);
474 DataToCm();
475 }
476 }
477

478 void CheckRoom(void)
479 {

480 int z = 1300;
481 if(SecondCheck == 1)
482 {
483 z = 1000;
484 }
485 for(x=0;x<45000;x++)
486 {
487 if((GPIOB_IDR & 0x100) != 0x100)

 //UVTron Pulls Pins Low
488 {
489 UV_Tron_Tick++; //Increment

the Tick Counter for UVTron and X
because it will get stuck in here if it
keeps seeing flame

490 x++;
491 }
492 if((GPIOB_IDR & 0x100) == 0x100)

 //UVTron not detecting flame reset
count

493 {
494 }
495 }
496 if(UV_Tron_Tick >= z) //This is the

amount of ticks the UV_Tron was
detecting

fire

497 //Increasing this adjusts makes the
UV_Tron harder to

trigger

498 {
499 x = 0; //Reset Counter
500 UV_Tron_Tick = 0;
501 FIRE = 1; //Returns 1 if fire has been

found
502 } //Reset the UV_Tron_Tick
503 else
504 {
505 x = 0;
506 UV_Tron_Tick = 0;
507 FIRE = 0; //Returns 0 if fire not found
508 }
509 }
510

511 void CheckLine(void)
512 {
513 if(ADC_Data[6] < 0xC00 || ADC_Data[7] < 0xC00) //If either line sensor is tripped 514 {
515 if(InsideRoom == 1) //Call the correct Function to Leave or Check Room 516 {

517 ExitAlignOnLine();
518 }
519 else if(InsideRoom == 0)
520 {
521 AlignOnLine();
522 }
523 }
524 }
525 void AlignOnLine(void)
526 {
527 MotorStop(); 528 Delay(2000);
529 for(int i = 0; i < 11600; i++)
530 {
531 ADC1_CR2 |= (1<<30);
532 DataToCm();
533 if(ADC_Data[6] <= 0xC00 && ADC_Data[7] > 0xC00) //If left

line sens tripped but right not
534 {
535 if(ADC_Data[7] > 0xC00) //Adjust right mtr to put right

sens over line
536 {
537 Right_Mtr(10);
538 Left_Mtr(0);
539 }
540 }
541 else if(ADC_Data[6] > 0xC00 && ADC_Data[7] <= 0xC00)//If

Right Line sens tripped but left not
542 {
543 if(ADC_Data[6] > 0xC00) //Adjust left mtr to put left sens

over line
544 {
545 Right_Mtr(0);
546 Left_Mtr(10);
547 }
548 }
549 else if(ADC_Data[6] < 0xC00 && ADC_Data[7] < 0xC00 ||

LineAlignBypass == 1)
550 //If both sensors are over line or UV Sensor has detected

flame and

bypassing need to find a line

551 {
552 LineAligned = 1;
553 if(ReturningHome == 1)
554 {
555 ReturnHomeLineCount = ReturnHomeLineCount - 1; //If

returning home and line found decrement amount of lines
needed until Home

556 if(ReturnHomeLineCount <= 0) //If Last Line has been
found meaning at start room Go Inside and wait forever

557 {
558 Left_Mtr(75);
559 Right_Mtr(75);
560 Delay(14000);
561 MotorStop();
562 while(1);
563 }
564 else if(ReturnHomeLineCount > 0) //If not back at the

Start Room Exit Room and
Keep searching

565 {
566 LeaveRoom();
567 }
568 }
569 else if(ReturningHome == 0) //If not returning home
570 {
571 LineCount++; //Increment the amount of lines found
572 MotorStop(); //Kill Motors
573 Delay(2000);
574 CheckRoom(); //Check room for UVTron trip if line detected
575 if(FIRE == 1) //If Fire is detected
576 {
577 ReturnHomeLineCount = 5 - LineCount; //This point we

can determine amount of lines
left to cross to get back home

578 if(LineAlignBypass != 1)
579 {
580 candleInDoorwayCheck();
581 }
582 if(flameAhead == 1 && LineAlignBypass != 1) //flameAhead

checks to see if room can be
fully or only half entered

583 {
584 Left_Mtr(75); //Enter room Half Because Candle is

obstructing full entrance

585 Right_Mtr(75);
586 Delay(13500);
587 MotorStop();
588 }
589 else if(flameAhead == 0 && LineAlignBypass != 1)

//FlameAhead check confirms that robot can
fully enter room

590 {
591 Left_Mtr(75); //Enter room fully because candle is not

obstructing entrance

592 Right_Mtr(75);
593 Delay(23500);
594 MotorStop();
595 }
596 flameAhead = 0; //Reset the flameAhead variable
597 GPIOB_ODR |= (1<<14); //Turn on LED to signal fire

found
598 InsideRoom = 1; //Signal that the robot is inside of a

room
599 while(CandleFound == 0) //While the Candle has not

been found
600 {
601 ScanForFlame(); //Scan the room using Sensitive UV

Sensor for
flame location

602 if(BreakVariable == 0)
603 {
604 FindFlame(); //Inch closer to the flame
605 }
606 }
607 while(FIRE!= 0) //While the fire has not been

extinguished
608 {
609 Delay(5000);
610 CheckRoom(); //Check the UVTron to see if Fire still present
611 if(FIRE != 0)
612 {

613 BreakVariable = 0; //Reset Variables to allow checking and
honing

in on flame

614 CandleFound = 0;
615 SecondCheck = 1;
616 while(CandleFound == 0) //Continue searching for the

candle until found
617 {
618 ScanForFlame(); //Scan the room using Sensitive UV

Sensor for
flame location

619 if(BreakVariable == 0)
620 {
621 FindFlame(); //Inch closer to the flame
622 }
623 }
624 }
625 else if(FIRE == 0) //If UVTron is not sensing flame

anymore
626 {
627 GPIOB_ODR &= ~(1<<14); //Turn off RED LED
628 ReturningHome = 1; //Set ReturningHome Variable to

change program
function for going home

629 while(InsideRoom == 1)
630 {
631 ExitStartRoom(); //Robot needs to get out of room so

reuse
ExitStartRoom

632 }
633 ExploreMazeFrontRightSensor();
634 break;
635 }
636 }
637 }
638 else if(FIRE == 0) //If fire is not initially detected

following
Line Trip

639 {
640 LeaveRoom(); //Back out and leave room to continue maze

exploration

641 break;
642 }
643 }
644 }
645 else if(i == 11599) //If the Robot has searched for so long

to line up line
sensors and not finding line with

646 { //other sensor probably a false trip so move forward
and Wall follow again

647 for(int i = 0; i < 25000; i++)
648 {
649 Left_Mtr(30);
650 Right_Mtr(30);
651 if(ADC_DataCm[1] <= 0xA && ADC_DataCm[0] <= 0xA)
652 {
653 ActualObstactle = 0;
654 for(x = 0; x < 15; x++)
655 {
656 ADC1_CR2 |= (1<<30);
657 DataToCm();
658 if(ADC_DataCm[1] <= 0xA && ADC_DataCm[0] <= 0xA)
659 {
660 ActualObstactle++;
661 }
662 else if(ADC_DataCm[1] > 0xA || ADC_DataCm[0] > 0xA)
663 {
664 Left_Mtr(30);
665 Right_Mtr(30);
666 ActualObstactle = 0;
667 break;
668 }
669 }
670 if(ActualObstactle >= 15)
671 {
672 ActualObstactle = 0;
673 CheckObstruction();
674 break;
675 }
676 else if(ActualObstactle < 15)
677 {
678 Left_Mtr(30);
679 Right_Mtr(30);

680 ActualObstactle = 0;
681 }
682 }
683 }
684 MotorStop();
685 if(ADC_DataCm[2] <= 0x14) //If Front Right is within Range

of a Wall
686 {
687 ExploreMazeFrontRightSensor();//Follow wall with front right

Sensor
688 }
689 else if(ADC_DataCm[2] > 0x14) //If Front Right is not within

Range of wall
690 {
691 ExploreMazeBackRightSensor();//Follow wall with back right

Sensor
692 }
693 break;
694 }
695 }
696 }
697

698

699

700 void ExitStartRoom(void)
701 {
702 InsideRoom = 1;
703 ClosestWall = 0x99;
704 ClosestWallDegree = 0;
705 for(int i = 0; i < 10; i++) //Spin and take 10 measurements so the robot can find

the closest wall to drive to

706 {
707 ADC1_CR2 |= (1<<30);
708 DataToCm();
709 if(ADC_DataCm[1] <= ClosestWall)
710 {
711 ClosestWall = ADC_DataCm[1];
712 ClosestWallDegree = i;
713 }
714 Left_Mtr(-50);
715 Right_Mtr(50);

716 Delay(8050); 717 MotorStop();
718 }
719 if(ClosestWallDegree > 4)
720 {
721 for(int x = 9; x > ClosestWallDegree; x--) //Decide quickest way to spin back to face

closest wall

722 { //Idea is to reverse the spin to go back to
facing original closest wall

723

724 Left_Mtr(50);
725 Right_Mtr(-50);
726 Delay(8050); 727 MotorStop();
728 } //Robot should now be facing the closest wall
729 }
730 else if(ClosestWallDegree <= 4) //Decide quickest way to spin back to face

closest wall

731 {
732 for(int x = 0; x < ClosestWallDegree; x++)
733 { //Idea is to reverse the spin to go back to

facing original closest wall

734

735 Left_Mtr(-50);
736 Right_Mtr(50);
737 Delay(8050); 738 MotorStop();
739 } //Robot should now be facing the closest wall
740 }
741 for(int z = 0; x < 200000; z++) //This for loop is to drive towards the wall and

breaks when within range

742 {
743 ADC1_CR2 |= (1<<30);
744 DataToCm();
745 if(ADC_DataCm[1] <= 0xA && ADC_DataCm[0] <= 0xA)
746 {
747 ActualObstactle = 0;
748 for(int i = 0; i < 10; i++) //Take 10 checks to avoid false obstacle trips
749 {
750 ADC1_CR2 |= (1<<30);
751 DataToCm();
752 if(ADC_DataCm[1] <= 0xA && ADC_DataCm[0] <= 0xA)

753 {
754 ActualObstactle++;
755 }
756 else if(ADC_DataCm[1] > 0xA || ADC_DataCm[0] > 0xA)
757 {
758 ActualObstactle = 0;
759 }
760 }
761 if(ActualObstactle >= 10) //If the front wall is within range turn the

robot and align using the wall

762 {
763 MotorStop();
764 ActualObstactle = 0;
765 TurnLeft90();
766 AlignAfterTurn();
767 ADC1_CR2 |= (1<<30);
768 DataToCm();
769 break;
770 }
771 else if(ActualObstactle < 10) //If wall not within range reset variable and

continue progressing forward

772 {
773 ActualObstactle = 0;
774 }
775 }
776 Left_Mtr(50);
777 Right_Mtr(50);
778 ADC1_CR2 |= (1<<30);
779 DataToCm();
780 }
781 while(InsideRoom == 1) //Once robot has found a wall to attach to right

wall follow until doorway found

782 {
783 ExploreMazeFrontRightSensor();
784 CheckObstruction();
785 }
786 }
787 void ExitAlignOnLine(void)
788 {
789 MotorStop(); 790 Delay(2000);
791 for(int i = 0; i < 15000; i++) //Once line at doorway of room has been found

Align on it

792 {
793 ADC1_CR2 |= (1<<30);
794 DataToCm();
795 if(ADC_Data[6] <= 0xC00 && ADC_Data[7] > 0xC00) //If left line sens tripped but

right not
796 {
797 if(ADC_Data[7] > 0xC00) //Adjust right mtr to put right sens over line
798 {
799 Right_Mtr(10);
800 Left_Mtr(0);
801 }
802 }
803 else if(ADC_Data[6] > 0xC00 && ADC_Data[7] <= 0xC00)//If Right Line sens tripped

but left not
804 {
805 if(ADC_Data[6] > 0xC00) //Adjust left mtr to put left sens over line
806 {
807 Right_Mtr(0);
808 Left_Mtr(10);
809 }
810 }
811 else if(ADC_Data[6] < 0xC00 && ADC_Data[7] < 0xC00) //If both sensors are over

line
812 {
813 MotorStop(); //Kill Motors
814 LineAligned = 1;
815 Delay(2000);
816 Left_Mtr(50);
817 Right_Mtr(50);
818 Delay(7000); //Turn Motors on Long Enough Just to Get off the white line
819 MotorStop();
820 InsideRoom = 0; //Changes which Align function will start

being called

821 break; //Robot has made it outside of the room at
this point RightWallFollow now

822 }
823 }
824 }
825

826 void AlignAfterTurn(void)

827 {
828 uint16_t FrontRight; 829 uint16_t BackRight;
830 for(int i = 0; i < 20000;i++) //Loop to line robot up with wall to help smoothen out

after turns

831 {
832 ADC1_CR2 |= (1<<30);
833 DataToCm();
834 FrontRight = ADC_DataCm[2] - OffSet;
835 BackRight = ADC_DataCm[3];
836 if(FrontRight > BackRight) //Front Right is closer than Back Right
837 {
838 Right_Mtr(-7);
839 Left_Mtr(7);
840 }
841 else if(FrontRight < BackRight) //Front Right is closer than Back Right
842 {
843 Right_Mtr(7);
844 Left_Mtr(-7);
845 }
846 else if(FrontRight == BackRight) //Front Right and Back Right at equal distance
847 {
848 MotorStop();
849 break;
850 }
851 }
852 }
853

854 void ScanForFlame(void)
855 {
856 int c = 0;
857 if(rotationDirection % 2 == 0) //Alternate the direction the robot spins to scan 858 {
859 Left_Mtr(-50);
860 Right_Mtr(50);
861 Delay(10000);
862 MotorStop();
863 if(BreakVariable == 0)
864 {
865 for(int a=0; a<1000000; a++) //Rotate right until uv is found
866 {
867 uv = 0;
868 uv2 = 0;
869 Left_Mtr(7);

870 Right_Mtr(-7);
871 for(int b=0; b<5; b++)
872 {
873 ADC1_CR2 |= (1<<30);
874 DataToCm();
875 uv = uv + ADC_Data[4];
876 if(b%2 == 0)
877 {
878 uv2 = uv2 + ADC_Data[5];
879 }
880 }
881 uv = uv/5;
882 if(ADC_DataCm[1] <= 0x7)
883 {
884 uv = 0xFFF;
885 }
886 uv2 = uv2/3;
887 if(uv2 < 0x200)
888 {
889 MotorStop();
890 Extinguish();
891 BreakVariable = 1;
892 CandleFound = 1;
893 break;
894 }
895 if(uv < 0x200)
896 {
897 MotorStop();
898 break;
899 }
900 }
901 }
902 if(BreakVariable == 0)
903 {
904 for(int a=0; a<1000000; a++) //Rotate right until uv is not found
905 {
906 uv = 0;
907 uv2 = 0;
908 Left_Mtr(7);
909 Right_Mtr(-7);
910 for(int b=0; b<5; b++)
911 {
912 ADC1_CR2 |= (1<<30);

913 DataToCm();
914 uv = uv + ADC_Data[4];
915 if(b%2 == 0)
916 {
917 uv2 = uv2 + ADC_Data[5];
918 }
919 c++;
920 }
921 uv = uv/5;
922 uv2 = uv2/3;
923 if(uv2 < 0x200)
924 {
925 MotorStop();
926 Extinguish();
927 BreakVariable = 1;
928 CandleFound = 1;
929 break;
930 }
931 if(uv > 0x200)
932 {
933 MotorStop();
934 break;
935 }
936 }
937 }
938 if(BreakVariable == 0)
939 {
940 for(int a=0; a <= c/2; a++)
941 {
942 Left_Mtr(-7);
943 Right_Mtr(7);
944 }
945 MotorStop();
946 MoveForwardReady = 1;
947 rotationDirection++;
948 }
949 }
950 else if(rotationDirection % 2 == 1)//Alternate the direction the robot spins to scan

951 {
952 Left_Mtr(50);
953 Right_Mtr(-50);
954 Delay(10000);
955 MotorStop();

956 if(BreakVariable == 0)
957 {
958 for(int a=0; a<1000000; a++) //Rotate left until uv found
959 {
960 uv = 0;
961 uv2 = 0;
962 Left_Mtr(-7);
963 Right_Mtr(7);
964 for(int b=0; b<5; b++) //Take 5 Samples of Sensitive UV Sensor
965 {
966 ADC1_CR2 |= (1<<30);
967 DataToCm();
968 uv = uv + ADC_Data[4];
969 if(b%2 == 0)
970 {
971 uv2 = uv2 + ADC_Data[5];
972 }
973 }
974 uv = uv/5;
975 if(ADC_DataCm[1] <= 0x7) //UV Sensor can also be tripped by close wall

this avoids
that false trip

976 {
977 uv = 0xFFF;
978 }
979 uv2 = uv2/3;
980 if(uv2 < 0x200) //If nonsensitive UV Sensor is tripped fire in range so

extinguish

981 {
982 MotorStop();
983 Extinguish();
984 BreakVariable = 1;
985 CandleFound = 1;
986 break;
987 }
988 if(uv < 0x200) //If aligned on flame stop on it and ready to inch closer
989 {
990 MotorStop();
991 break;
992 }
993 }
994 }

995 if(BreakVariable == 0)
996 {
997 for(int a=0; a<1000000; a++) //Rotate left until uv not found
998 {
999 uv = 0;
1000 uv2 = 0;
1001 Left_Mtr(-7);
1002 Right_Mtr(7);
1003 for(int b=0; b<5; b++) //5 Samples taken
1004 {
1005 ADC1_CR2 |= (1<<30);
1006 DataToCm();
1007 uv = uv + ADC_Data[4];
1008 if(b%2 == 0)
1009 {
1010 uv2 = uv2 + ADC_Data[5];
1011 }
1012 c++;
1013 }
1014 uv = uv/5;
1015 uv2 = uv2/3;
1016 if(uv2 < 0x200) //If nonsensitive UV Sensor tripped extinguish
1017 {
1018 MotorStop();
1019 Extinguish();
1020 BreakVariable = 1;
1021 CandleFound = 1;
1022 break;
1023 }
1024 if(uv > 0x200) //If Sensitive UV is no longer detecting break... Ready to find

Middle point = FLAME

1025 {
1026 MotorStop();
1027 break;
1028 }
1029 }
1030 }
1031 if(BreakVariable == 0) //Spin the robot back to the mid point which should be

the fire or very close
1032 {
1033 for(int a=0; a <= c/2; a++)
1034 {

1035 Left_Mtr(7);
1036 Right_Mtr(-7);
1037 }
1038 MotorStop();
1039 MoveForwardReady = 1;
1040 rotationDirection++;
1041 }
1042 }
1043 }

1044

1045

1046 void candleInDoorwayCheck(void)
1047 { //Function to determine if the candle is in the way of robot fully

entering the room

1048 for(int a=0; a<30000; a++) //Rotate left until uv is found
1049 {
1050 uv = 0;
1051 Left_Mtr(-7);
1052 Right_Mtr(7);
1053 for(int b=0; b<5; b++) 1054 {
1055 ADC1_CR2 |= (1<<30);
1056 uv = uv + ADC_Data[4];
1057 }
1058 uv = uv/5;
1059 if(uv < 0x200) 1060 {
1061 MotorStop();
1062 flameAhead = 1; //set variable
1063 for(int d=0; d<a; d++) //reverse back
1064 {
1065 Left_Mtr(7);
1066 Right_Mtr(-7);
1067 }
1068 MotorStop();
1069 break;
1070 }
1071 }
1072 if(flameAhead != 1)
1073 {
1074 for(int c=0; c<30000; c++)
1075 {
1076 Left_Mtr(7);

1077 Right_Mtr(-7);
1078 }
1079 MotorStop();
1080 }
1081 for(int a=0; a<30000; a++) //Rotate left until uv is found 1082 {
1083 uv = 0;
1084 Left_Mtr(7);
1085 Right_Mtr(-7);
1086 for(int b=0; b<5; b++) 1087 {
1088 ADC1_CR2 |= (1<<30);
1089 uv = uv + ADC_Data[4];
1090 }
1091 uv = uv/5;
1092 if(uv < 0x200) 1093 {
1094 MotorStop();
1095 flameAhead = 1; //set variable
1096 for(int d=0; d<a; d++) //reverse back
1097 {Left_Mtr(-7);
1098 Right_Mtr(7);}
1099 MotorStop();
1100 break;
1101 }
1102 }
1103 if(flameAhead != 1)
1104 {
1105 for(int c=0; c<30000; c++)
1106 {
1107 Left_Mtr(-7);
1108 Right_Mtr(7);
1109 }
1110 MotorStop();
1111 }
1112 }
1113 void FindFlame(void)
1114 {
1115 ADC1_CR2 |= (1<<30);
1116 DataToCm();
1117 if(MoveForwardReady == 1 && ADC_DataCm[1] > 0x9)
1118 {
1119 Left_Mtr(50);
1120 Right_Mtr(50);
1121 MoveForwardReady = 0; 1122 }

1123 for(int z = 0; z < 7000; z++) //This for loop is to drive towards the wall and breaks
when within range

1124 {
1125 ADC1_CR2 |= (1<<30);
1126 DataToCm();
1127 if(ADC_DataCm[1] <= 0xA) //While moving continue checking for obstacle 1128

 {
1129 for(int i = 0; i < 10; i++) //10 readings to avoid false trips
1130 {
1131 ADC1_CR2 |= (1<<30);
1132 DataToCm();
1133 if(ADC_DataCm[1] <= 0xA)
1134 {
1135 ActualObstactle++;
1136 }
1137 else if(ADC_DataCm[1] > 0xA)
1138 {
1139 ActualObstactle = 0;
1140 break;
1141 }
1142 }
1143 if(ActualObstactle >= 10) //If there is an actual obstacle Candle is found
1144 {
1145 MotorStop();
1146 ADC1_CR2 |= (1<<30);
1147 if(ADC_Data[5] <= 0x200)//Check the Nonsensitive UV Sensor and extinguish if

needed
1148 {
1149 CandleFound = 1;
1150 Extinguish();
1151 Delay(5000);
1152 }
1153 else if(ADC_Data[5] > 0x200)
1154 {
1155 BreakVariable = 0;
1156 CandleFound = 0;
1157 }
1158 ActualObstactle = 0;
1159 break;
1160 }
1161 else if(ActualObstactle < 10) //If False Tripped reset variable
1162 {
1163 ActualObstactle = 0;

1164 }
1165 }
1166 else if(ADC_Data[5] <= 0x200) //If Nonsensitive UV Sensor is tripped 1167

 {
1168 for(int m=0; m<3; m++) //Triple check to make sure the Fire has been found
1169 {
1170 ADC1_CR2 |= (1<<30);
1171 uv2 = uv2 + ADC_Data[5];
1172 }
1173 uv2 = uv2/3;
1174 if(uv2 <= 0x200)
1175 {
1176 CandleFound = 1;
1177 MotorStop();
1178 Extinguish();
1179 Delay(5000);
1180 uv2 = 0;
1181 break;
1182 }
1183 else if(uv2 > 0x200)
1184 {
1185 uv2 = 0;
1186 }
1187 }
1188 else if(ADC_DataCm[1] > 0xA && ADC_Data[5] > 0x200) //Otherwise fire is not

within range
1189 {
1190 if(ADC_DataCm[2] <= 0x8 && ADC_DataCm[3] <= 0x8)
1191 {
1192 InRange++;
1193 if(InRange >= 5)
1194 {
1195 OffSet = 2;
1196 AlignAfterTurn();
1197 InRange = 0;
1198 OffSet = 1;
1199 }
1200 }
1201 Left_Mtr(50);
1202 Right_Mtr(50);
1203 ADC1_CR2 |= (1<<30);
1204 DataToCm();
1205 }

1206 else if(z == 6999)
1207 {
1208 MotorStop();
1209 break;
1210 }
1211 }
1212 }
1213

1214

1215

1216 void Extinguish(void)
1217 {
1218 GPIOB_BSRR |= 1<<9; //propeller on
1219 Delay(40000);
1220 GPIOB_BSRR |= 1<<25; //propeller off
1221 Delay(5000);
1222 }
1223

1224 void LeaveRoom(void)
1225 {
1226 Left_Mtr(-50);
1227 Right_Mtr(-50);
1228 Delay(21000); //Idea here is to back out of the room a bit 1229 MotorStop(); 1230

Delay(5000);
1231 Left_Mtr(-50); //Mtrs turned on in opp directions
1232 Right_Mtr(50);
1233 Delay(21500); //Delay obtained from testing for 90 degree turn 1234 MotorStop();
1235 Alignable = 0;
1236 Delay(5000);
1237 for(int i = 0; i < 200000; i++)
1238 {
1239 ADC1_CR2 |= (1<<30);
1240 DataToCm(); //Progress forward until wall found to attach to
1241 Left_Mtr(50);
1242 Right_Mtr(50);
1243 if(ADC_DataCm[1] <= 0xA && ADC_DataCm[0] <= 0xA)
1244 {
1245 ActualObstactle = 0;
1246 for(x = 0; x < 15; x++)
1247 {
1248 ADC1_CR2 |= (1<<30);

1249 DataToCm();
1250 if(ADC_DataCm[1] <= 0xA && ADC_DataCm[0] <= 0xA)
1251 {
1252 ActualObstactle++;
1253 }
1254 else if(ADC_DataCm[1] > 0xA || ADC_DataCm[0] > 0xA)
1255 {
1256 Left_Mtr(30);
1257 Right_Mtr(30);
1258 ActualObstactle = 0;
1259 break;
1260 }
1261 }
1262 if(ActualObstactle >= 15)
1263 {
1264 ActualObstactle = 0;
1265 CheckObstruction();
1266 break;
1267 }
1268 else if(ActualObstactle < 15)
1269 {
1270 Left_Mtr(50);
1271 Right_Mtr(50);
1272 ActualObstactle = 0;
1273 }
1274 }
1275 else if(ADC_DataCm[2] <= 0xD && ADC_DataCm[3] <= 0xD)
1276 {
1277 for(int x = 0; x < 15; x++)
1278 {
1279 ADC1_CR2 |= (1<<30);
1280 DataToCm();
1281 if(ADC_DataCm[2] <= 0xD && ADC_DataCm[3] <= 0xD)
1282 {
1283 Alignable++;
1284 }
1285 else if(ADC_DataCm[2] > 0xD || ADC_DataCm[3] > 0xD)
1286 {
1287 Alignable = 0;
1288 //break;
1289 }
1290 }
1291 if(Alignable >= 15)

1292 {
1293 Delay(4000); 1294 MotorStop(); 1295 Delay(5000);
1296 Alignable = 0;
1297 AlignAfterTurn();
1298 Delay(5000);
1299 ADC1_CR2 |= (1<<30);
1300 DataToCm();
1301 break;
1302 }
1303 else if(Alignable < 15)
1304 {
1305 Left_Mtr(50);
1306 Right_Mtr(50); 1307 Alignable = 0;
1308 }
1309 }
1310 else if(i == 35000)
1311 {
1312 AlignAfterTurn();
1313 }
1314 else if(i == 54000) //If the front right sensor is within range of a wall begin using it

again to explore
1315 {
1316 MotorStop();
1317 AlignAfterTurn();
1318 if(ADC_DataCm[2] <= 0x14) //If Front Right is within Range of a Wall
1319 {
1320 ExploreMazeFrontRightSensor();//Follow wall with front right Sensor
1321 }
1322 else if(ADC_DataCm[2] > 0x14) //If Front Right is not within Range of wall
1323 {
1324 ExploreMazeBackRightSensor();//Follow wall with back right Sensor
1325 }
1326 break;
1327 }
1328 }
1329 }
1330

1331 void MicSetup(void)
1332 {
1333 //Clock bits
1334 RCC_APB1ENR |= (1 << 29); //Bit 29 is DAC clock enable bit
1335 RCC_APB2ENR |= (1<<9); //Bit 8 is ADC 2 clock enable bit

1336 RCC_APB1ENR |= (1 << 4); //Enable peripheral timer for
timer 6

1337 //I/O bits
1338 GPIOA_MODER |= 0x4000; //Bits 15-14 = 01 for digital

output on PA7
1339 //OTYPER register resets to 0 so it is push/pull by default
1340 GPIOA_OSPEEDER |= 0xC000; //Bits 15-14 = 11 for high

speed on PA7
1341 //PUPDR defaults to no pull up no pull down
1342 GPIOA_MODER |= 0xC00; //PA5 is MIC analog
1343 GPIOB_MODER |= 1<<(2*15); //PB15 is output LED for mic

1344
1345 //DAC bits
1346 DAC_CR |= 0x3E; //Bits 3, 4, 5 = 111 for software trigger

ch1
1347 //Bit 2 = 1 for Ch 1 trigger enabled
1348 //Bit 1 = 1 for Ch 1 output buffer enabled
1349 DAC_CR |= 1; //Bit 0 = 1 for Ch 1 enabled
1350 //ADC bits
1351 ADC2_CR2 |= 1; //Bit 0 turn ADC on
1352 ADC2_CR2 |= 0x400; //Bit 10 allows EOC to be set after

conversion
1353 ADC2_SQR3 |= 0x5; //Bits 4:0 are channel number for first

conversion
1354 // Channel is set to 5 which corresponds to PA5
1355 //Timer 6 bits
1356 TIM6_CR1 |= (1 << 7); //Auto reload is buffered 1357

 TIM6_CR1 |= (1 << 3); //One pulse mode is on. 1358
 TIM6_PSC = 0; //Don't use prescaling

1359 TIM6_ARR = 1000; //Math explanation below
1360 //^^Did not reset sysclk so clk is 16Mhz(HSI) Math Changed

to:
1361 // [(16Mhz)/TIM6_ARR] = 16,000 The 16,000 is from fs set

in Octave
program

1362 //Gives Tim6_ARR = 1000;
1363 TIM6_CR1 |= 1; //Enable Timer 6
1364 }
1365

1366 void Check_Mic_Input(void)
1367 {
1368 if(count < cMax)
1369 {

1370 if(yInt > 2300) //This number is adjustable and had to set
higher so the lower freq. Button

1371 //would stop tripping the mic...
1372 {
1373 maxY++;
1374 count++;
1375 }
1376 }
1377 else
1378 {
1379 count = 0;
1380 if(maxY >= 16) //This number is set to try and cut out short

bursts played at correct frequency
1381 {
1382 GPIOB_ODR |= (1<<15); //Toggle LED for now but start signal

later
1383 StartSound = 1;
1384 Delay(5000);
1385 maxY = 0;
1386 }
1387 else if(maxY < 16) //Can be adjusted to cut out short

bursts of 3.8kHz tones
1388 {
1389 StartSound = 0;
1390 maxY = 0;
1391 }
1392 }
1393 }
1394

1395 void Start_Sound(void)
1396 {
1397 //First Section Contants: Row 1 Above
1398 const float b10 = .011522;
1399 const float b11 = .012323;
1400 const float b12 = .011522;
1401 const float a11 = .284777;
1402 const float a12 = .979202;
1403 //Second Section Constants: Row 2 Above
1404 const float b20 = 1.0000;
1405 const float b21 = .457263;
1406 const float b22 = 1.0000;
1407 const float a21 = .230837;

1408 const float a22 = .913693;
1409 //Third Section Constants: Row 3 Above
1410 const float b30 = 1.0000;
1411 const float b31 = .358901;
1412 const float b32 = 1.0000;
1413 const float a31 = .056960;
1414 const float a32 = .809374;
1415 //Fourth Section Constants: Row 4 Above
1416 const float b40 = 1.0000;
1417 const float b41 = -.548337;
1418 const float b42 = 1.0000;
1419 const float a41 = -.236649;
1420 const float a42 = .810769;
1421 //Fifth Section Constants: Row 5 Above
1422 const float b50 = 1.0000;
1423 const float b51 = -.641882;
1424 const float b52 = 1.0000;
1425 const float a51 = -.416775;
1426 const float a52 = .915080;
1427 //Sixth Section Constants: Row 6 Above
1428 const float b60 = 1.0000;
1429 const float b61 = -1.204521;
1430 const float b62 = 1.0000;
1431 const float a61 = -.475228;
1432 const float a62 = .979594;
1433

1434 unsigned int xInt;
1435 float x, y10, y20, y30, y40, y50, y60;
1436 float w10, w11, w12;
1437 float w20, w21, w22;
1438 float w30, w31, w32;
1439 float w40, w41, w42;
1440 float w50, w51, w52;
1441 float w60, w61, w62;
1442

1443 while(StartSound == 0)
1444 {
1445 ADC2_CR2 |= 0x40000000; //Bit 30 does software start of A/D conversion
1446 while((ADC2_SR & 0x2) == 0); //Bit 1 is End of Conversion
1447 xInt = ADC2_DR;
1448 x = ((float)(xInt & 0xFFF))/(float)4095.0;

1449 //first section
1450 w10 = x-a11*w11-a12*w12;
1451 y10 = b10*w10+b11*w11+b12*w12;
1452 //second section with 'y10' as the input, and 'y20' as the output
1453 w20 = y10-a21*w21-a22*w22;
1454 y20 = b20*w20+b21*w21+b22*w22;
1455 //third section with 'y20' as the input, and 'y30' as the output
1456 w30 = y20-a31*w31-a32*w32;
1457 y30 = b30*w30 + b31*w31 + b32*w32;
1458 //fourth section with 'y30' as the input, and 'y40' as the output
1459 w40 = y30-a41*w41-a42*w42;
1460 y40 = b40*w40+b41*w41+b42*w42;
1461 //fourth section with 'y40' as the input, and 'y50' as the output
1462 w50 = y40-a51*w51-a52*w52;
1463 y50 = b50*w50+b51*w51+b52*w52;
1464 //sixth section with 'y50' as the input, and 'y60' as the output
1465 w60 = y50-a61*w61-a62*w62;
1466 y60 = b60*w60+b61*w61+b62*w62;
1467

1468 yInt = (int)(1500*(y60+1)); //Data to D/A

1469

1470 DAC_DHR12R1 = yInt & 0xFFF; //Converted number to D/A
1471 DAC_SWTRIGR |= 0x1; //Start the D/A conversion
1472 w12 = w11;
1473 w11 = w10;
1474 w22 = w21;
1475 w21 = w20;
1476 w32 = w31;
1477 w31 = w30;
1478 w42 = w41;
1479 w41 = w40;
1480 w52 = w51;
1481 w51 = w50;
1482 w62 = w61;
1483 w61 = w60;
1484

1485 Check_Mic_Input(); //Call function to determine if Start_Frequency Detected
1486 while((TIM6_CR1 & 1) != 0); //Wait here until timer runs out
1487 TIM6_CR1 |= 1; //Restart timer
1488 }
1489 } 1490

1491 void Delay(unsigned int z)//Function for variable delay based on the unsigned int that is
sent

1492 {
1493 unsigned int x;
1494 int y;//Declares variables to be used in loops
1495 for(x=0;x<z;x++)
1496 {for(y = 0;y < 256; y++);}}
1497

Appendix D

Appendix C

References

1. Trinity College. (2018, September 18). [Online].
Available: http://www.trinityrobotcontest.org/rules.html

2. “Sharp GP2Y0A41SK0F IR Range Sensor – 4 to 30cm”
https://www.robotshop.com/en/sharp-gp2y0a41sk0f-ir-range-sensor.html

3. “SparkFun Electret Microphone Breakout.” BOB-12758 - SparkFun
Electronics, www.sparkfun.com/products/12758.

4. RedBot Line Sensor, www.robotshop.com/en/redbot-line-sensor.html.

5. “STM32F446RE”

https://www.st.com/content/st_com/en/products/microcontrollers/stm32-32-bit-arm-
cortex-mcus/stm32-high-performance-mcus/stm32f4-series/stm32f446/stm32f446re.html

6. “Pololu 12V, 100:1 Gear Motor w/ 64 CPR
Encoder.” Www.robotshop.com, www.robotshop.com/en/pololu-12v-1001-gear-motor-
64-cpr-
encoder.html?gclid=CjwKCAjw0oveBRAmEiwAzf6_rMMimJqBrek9OUvlEtH5p4FHL
SQvPCSDs-aYXzHrbn9va2kll57gtxoCjvsQAvD_BwE.

7. “Cytron 10A 5-30V Dual Channel DC Motor Driver.” Www.robotshop.com,

www.robotshop.com/en/cytron-10a-5-30v-dual-channel-dc-motor-driver.html.

8. “FLAME SENSOR UVTRON”
https://www.hamamatsu.com/resources/pdf/etd/R9454_R9533_TPT1019E.pdf

9. “IEEE Standards Association”
https://standards.ieee.org/standard/C37_14-2002.html

http://www.trinityrobotcontest.org/rules.html
https://www.robotshop.com/en/sharp-gp2y0a41sk0f-ir-range-sensor.html
http://www.sparkfun.com/products/12758
https://www.st.com/content/st_com/en/products/microcontrollers/stm32-32-bit-arm-cortex-mcus/stm32-high-performance-mcus/stm32f4-series/stm32f446/stm32f446re.html
https://www.st.com/content/st_com/en/products/microcontrollers/stm32-32-bit-arm-cortex-mcus/stm32-high-performance-mcus/stm32f4-series/stm32f446/stm32f446re.html
http://www.robotshop.com/en/pololu-12v-1001-gear-motor-64-cpr-encoder.html?gclid=CjwKCAjw0oveBRAmEiwAzf6_rMMimJqBrek9OUvlEtH5p4FHLSQvPCSDs-aYXzHrbn9va2kll57gtxoCjvsQAvD_BwE
http://www.robotshop.com/en/pololu-12v-1001-gear-motor-64-cpr-encoder.html?gclid=CjwKCAjw0oveBRAmEiwAzf6_rMMimJqBrek9OUvlEtH5p4FHLSQvPCSDs-aYXzHrbn9va2kll57gtxoCjvsQAvD_BwE
http://www.robotshop.com/en/pololu-12v-1001-gear-motor-64-cpr-encoder.html?gclid=CjwKCAjw0oveBRAmEiwAzf6_rMMimJqBrek9OUvlEtH5p4FHLSQvPCSDs-aYXzHrbn9va2kll57gtxoCjvsQAvD_BwE
http://www.robotshop.com/en/pololu-12v-1001-gear-motor-64-cpr-encoder.html?gclid=CjwKCAjw0oveBRAmEiwAzf6_rMMimJqBrek9OUvlEtH5p4FHLSQvPCSDs-aYXzHrbn9va2kll57gtxoCjvsQAvD_BwE
https://www.hamamatsu.com/resources/pdf/etd/R9454_R9533_TPT1019E.pdf

