

First Flight Drone

For First Time Flyers

Thomas Jandebeur, Electrical Engineering

Sponsored by CECS, University of Evansville

Project Advisor: Dr. Mark Mitchell

April 26, 2019

Evansville, Indiana

Acknowledgements

 A big thanks to Dr. Mitchell for being my advisor and allowing me to use the mounting
board from the optics lab for the initial flight testing and a very special thanks to Jeff for helping
me create the aluminum mounting bracket.

Table of Contents

I. Introduction

II. Design Approach

A. Hardware Design

B. Software Design

III. Results

Appendix A

List of Figures

1. Basic Hardware Flowchart
2. PID Flowchart
3. Finished Product

List of Tables

1. Microcontroller Inputs
2. Microcontroller Outputs

I. Introduction

 With the popularity of Unmanned Arial Vehicles, UAVs or more commonly called
Drones, quickly rising, more people are wanting to learn how to fly. This comes with inherent
risks no matter where or what someone is flying. Learning to fly indoors can be easier as dangers
such as wind and trees are no longer a problem and cold weather and rain are not a concern. New
issues, however, arise from tight spaces with walls and ceilings becoming the new danger. I built
a drone using off the shelf parts with a custom flight controller to allow for easy indoor flight. I
originally planned to add distance sensors but ultimately ran out of time due to complications
with the tuning process.

II. Design Approach

 I decided to keep the design simple by using standard parts and focusing on just creating
the flight controller. This was done to prevent having to balance weight and power and to avoid
being caught in a cycle attempting to balance the two. Doing so allowed me to complete the
project and have a flyable drone.

 A. Hardware Design

 The drone is using a 250 frame (250mm between opposite motors) made from carbon
fiber for increased durability and reduced weight. This is paired with 2300kv 2204 brushless
motors with matching 15A Electronic Speed Controllers (ESCs) and 5030 dual blade propellers.
Everything is powered through a Matek Power Distribution Board (PDB) connected to a TATTU
4S 45C 1300mAh Lithium Polymer (LiPo) battery that is monitored by LiPo voltage monitor.
The flight controller is programmed onto a STM32F407G-DISC1 microcontroller utilizing an

Adafruit 9-DOF IMU. Everything is
controlled by the Flysky FS-i6X 2.4GHz
Remote Control (RC) transmitter with
matching receiver. Figure 1 to the left is
the basic flowchart for the hardware listed
above. The Discovery board was chosen
due to my previous experience with the
board and its abundance of available
timers and ports for the most flexibility.
The RC transmitter is using Mode 2, the
most common and popular of the four RC
modes, which places throttle/yaw on the
left stick and pitch/roll on the right stick.

Figure 1 Basic hardware flow chat

Inputs

 Channel 1 Channel 2 Channel 3 Channel 4 Channel 5 Channel 6 I2C

Purpose Roll Pitch Throttle Yaw Arm & Kill Mode IMU

Timer T5C2 T3C2 T3C3 T3C4 T3C1/T5C1 T5C3 N/A

Port A1 B5 C8 C9 B4/A0 A2 B10/B11

Pulse PWM Period: 20ms High Time: 1-2ms 5µs CLK
Table 1 Microcontroller Inputs

The RC reciever has a 6-channel
output using standard PWM for
RC shown in Table 1 above. The
Arm and Kill switch is connected
to the first channel of both input
timers due to a characteristic of
the timers that requires channel
one to have to the PWM signal

with the highest pulse width or the other three channels on that timer
will overflow. The IMU is wrapped in aluminium foil to shield against interference as any signal
over 2MHz near the board causes the crystal to lock up and freezes the I2C protocol stopping the
flight controller. It is mounted to the center of the frame with nylon nuts with rubber washers to
isolate the sensors from high-frequency vibrations from the motors. The microcontroller is
mounted to an aluminum bracket cut from a small sheet of thin aluminum, folded and attached to
the frame using standoffs. The front of the bracket is also used as a battery holder, along with a
velcro strap, to hold the battery down to the frame with the standoffs acting as a backstop and
marker so the battery is always in the same position when replaced. The microcontroller is also
attached to two breakout boards, one on each side, to allow it to be easily replaced as well as
closed-cell foam on top of the microcontroller for additional padding to prevent damage during a
crash.

 B. Software Design

 For this project, I had to teach myself the I2C protocol and how to implement it. After
discovering that interference was causing the IMU to freeze, I implemented a counter that would
detect if the IMU was no longer responding and restart the I2C. There are three modes of flight as
shown in Figure 2 on the next page. Expert, or more commonly called ‘Acro Mode,’ uses only
the gyroscope and the Rate PID controller with the stick inputs controlling how fast the drone
rotates. Intermediate, also called ‘Angle Mode,’ uses the accelerometer with the Angle PID
controller as well as the gyroscope and Rate PID controller with the pitch and roll inputs
controlling how far the drone rotates. Yaw control in intermediate still only uses the Rate PID
controller. Beginner is the same as Intermediate but with pitch and roll more limited in how far

Outputs

 Motor A Motor B Motor C Motor D

Position Front-Left Front-Right Back-Left Back-Right

Timer T4C1 T4C2 T4C3 T4C4

Port B6 B7 D14 D15

PWM Period: 500µs High Time: 125-250µs

Table 2 Microcontroller Outputs

each can rotate as well as having the throttle range limited to half. Each axis, pitch, yaw, and roll,
has individual Rate PID controllers with separate constants. Pitch and roll also have separate

Figure 2 PID Flowchart

Angle PID controllers. Each axis also has individual sensitivity settings with pitch and roll
having different sensitivity settings for both Intermediate and Beginner. The Gyroscope has three
variables, one for each axis, to correct for drift and the Accelerometer has two variables, one for
pitch and one for roll, to correct for offset. The brushless motors also have a mininum throttle to
stay in sync with the ESCs. If the input falls below this limit followed by a jump above it then
the motor no longer spins properly and stays out of sync until the mininum throttle is matched
again. All of these account for a total of 28 individual variables, some affected by or even
dependent on another, that I had to tune seperatly. This was the bulk of my project; finding the
sweet spot for all of them. This compounded by the fact that every time something physically
changes on the drone the PID constants change. I had to completely restart tuning from scratch
twice; once when I broke the original mounting bracet and replaced it with the aluminum
bracket, and once when I fixed a back-and-forth drifting issue that would cause the drone to
crash by increasing the gain on the IMU inputs.

III. Results

 I created a drone that anyone with zero
flight experience and minimal instruction can
fly indoors. It has three modes of flight,
Beginner, Intermediate, and Expert, designed
to allow someone to learn both Acro and
Angle control mode and fly any drone. The
drone is durable and can survive many
crashes and can be flown both indoors and
outdoors.

Figure 3 Final Product

Appendix A

#include "stm32f407vg.h"
#include <float.h>

int main()
{
 {//timer/port/I2C ini
 {//timer/port clock
 RCC_AHB1ENR |= (1 << 3); //port D clock
 RCC_AHB1ENR |= (1 << 2); //port C clock
 RCC_AHB1ENR |= (1 << 1); //port B clock
 RCC_AHB1ENR |= 1; //port A clock
 RCC_APB1ENR |= (1 << 3); //timer 5 clock
 RCC_APB1ENR |= (1 << 2); //timer 4 clock
 RCC_APB1ENR |= (1 << 1); //timer 3 clock
 RCC_APB1ENR |= (1 << 22); //enable I2C2
 RCC_APB1RSTR |= (1 << 22); //reset I2C2
 RCC_APB1RSTR &= ~(1 << 22);
 NVICISER0 |= (1 << 30);
 }
 {//timer 4
 TIM4_DIER |= 1; //Update interrupt enabled
 TIM4_DIER |= (1 << 6); //Trigger interrupt enabled
 TIM4_CR1 |= (1 <<7); //enable auto-reload preload
 TIM4_CR2 |= 0x20;
 TIM4_PSC = 0; //Timer 4 prescaler
 TIM4_ARR = 8000; //Timer 4 auto reload every 2.5ms; 1000 tics = 1ms
 TIM4_CCMR2 |= 0x6868; //Output compare 4 mode 3, preload enabled
 TIM4_CCMR1 |= 0x6868;
 TIM4_SCMR |= 0x0080;
 TIM4_CCER |= 0x1111; //Capture/Compare output enable
 TIM4_CCR1 = 250;
 TIM4_CCR2 = 250;
 TIM4_CCR3 = 250;
 TIM4_CCR4 = 250; //output value
 TIM4_EGR |= 1; //timer reset
 TIM4_CR1 |= 1; //enable timer
 }
 {//timer 3
 TIM3_DIER |= 1; //Update interrupt enabled
 TIM3_DIER |= (1 << 6); //Trigger interrupt enabled
 TIM3_DIER |= (1 << 1); //Trigger interrupt enabled
 TIM3_CR1 |= (1 <<7); //enable auto-reload preload
 TIM3_PSC =15; //Timer 3 prescaler
 TIM3_ARR = 20000; //Timer 3 auto reload every 20ms; 1000 tics = 1ms
 TIM3_CCMR2 |= 0x0101; //Output compare pwm input
 TIM3_CCMR1 |= 0x0101;
 TIM3_CCER |= 0x3333; //Capture/Compare input
 TIM3_SCMR |= 0x0044;

 TIM3_CR1 |= 1; //enable timer
 }
 {//timer 5
 TIM5_DIER |= 1; //Update interrupt enabled
 TIM5_DIER |= (1 << 6); //Trigger interrupt enabled
 TIM5_DIER |= (1 << 2); //Trigger interrupt enabled
 TIM5_CR1 |= (1 <<7); //enable auto-reload preload
 TIM5_PSC =15; //Timer 5 prescaler
 TIM5_ARR = 20000; //Timer 5 auto reload every 20ms; 1000 tics = 1ms
 TIM5_CCMR2 |= 0x0101; //Output compare pwm input
 TIM5_CCMR1 |= 0x0101;
 TIM5_CCER |= 0x3333; //Capture/Compare input
 TIM5_SCMR |= 0x0044;
 TIM5_CR1 |= 1; //enable timer
 }
 {//port A
 GPIOA_PUPDR &= 0x00000000; //clear
 GPIOA_PUPDR |= 0x0000A000;
 GPIOA_AFRL &= 0xFFFF0000;
 GPIOA_AFRL |= 0x00002222; //PA0-3 AF2
 GPIOA_MODER &= 0xFFFF0F00;
 GPIOA_MODER |= 0x000050AA; //PA0-3 AF
 }
 {//port B
 GPIOB_PUPDR &= 0x00000000; //clear
 GPIOB_PUPDR |= 0x000A0000;
 GPIOB_AFRL &= 0x0000FFFF;
 GPIOB_AFRL |= 0x22220000; //PB4-7 AF2
 GPIOB_MODER &= 0xFFF000FF;
 GPIOB_MODER |= 0x0005AA00; //PB4-7
 GPIOB_MODER |= 0x00A00000; //PB10-11
 GPIOB_OTYPER |= 0x00000C00; //PB10-11 Open Drain
 GPIOB_AFRH |= 0x00004400; //PB10-11 AF4
 }
 {//port C
 GPIOC_PUPDR &= 0x00000000; //clear
 GPIOC_PUPDR |= 0x0000000A;
 GPIOC_AFRH &= 0xFFFFFF00;
 GPIOC_AFRH |= 0x00000022; //PC8,9 AF2
 GPIOC_MODER &= 0xFFF0FFF0;
 GPIOC_MODER |= 0x000A0005;
 }
 {//port D
 GPIOD_PUPDR &= 0x00000000;
 GPIOD_PUPDR |= 0x00A04800;
 GPIOD_AFRH &= 0x00FFFFFF;
 GPIOD_AFRH |= 0x22000000; //PD15, 14 AF2
 GPIOD_MODER &= 0x0F0F00F0;
 GPIOD_MODER |= 0xA0501401; //PD14,15AF; 5,6,10,11 ground
 }

 }

 //Variables
 volatile unsigned char GyrXL, GyrXM, GyrYL, GyrYM, GyrZL, GyrZM, EulXL, EulXM, EulYL, EulYM;
 volatile signed short GyrPitch, GyrRoll, GyrYaw, EulRoll, EulPitch;
 volatile float RollF, PitchF, GyrPitchF, GyrRollF, GyrYawF;
 volatile unsigned short MotorA = 0, MotorB = 0, MotorC = 0, MotorD = 0;

 volatile float ThrottleOutput = 0;
 volatile float PitchRateCurrent = 0, PitchRateDesired = 0, PitchRateError = 0, PitchRateErrorOld = 0,
PitchRateIntegral = 0, PitchRateDerivative = 0, PitchRateOutput = 0;
 volatile float RollRateCurrent = 0, RollRateDesired = 0, RollRateError = 0, RollRateErrorOld = 0,
RollRateIntegral = 0, RollRateDerivative = 0, RollRateOutput = 0;
 volatile float YawRateCurrent = 0, YawRateDesired = 0, YawRateError = 0, YawRateErrorOld = 0,
YawRateIntegral = 0, YawRateDerivative = 0, YawRateOutput = 0;
 volatile float PitchAngleCurrent = 0, PitchAngleDesired = 0, PitchAngleError = 0, PitchAngleErrorOld = 0,
PitchAngleIntegral = 0, PitchAngleDerivative = 0, PitchAngleOutput = 0;
 volatile float RollAngleCurrent = 0, RollAngleDesired = 0, RollAngleError = 0, RollAngleErrorOld = 0,
RollAngleIntegral = 0, RollAngleDerivative = 0, RollAngleOutput = 0;

 volatile const float PitchRateKp = .003, PitchRateKi = .009, PitchRateKd = .0000518;
 volatile const float RollRateKp = .002, RollRateKi = .005, RollRateKd = .00004295;
 volatile const float YawRateKp = .2, YawRateKi = .001, YawRateKd = 0;
 volatile const float PitchAngleKp = 2.5, PitchAngleKi = 0, PitchAngleKd = .01;
 volatile const float RollAngleKp = 2.5, RollAngleKi = 0, RollAngleKd = .01;

 volatile const float PitchRateSens = 250, RollRateSens = 250, YawRateSens = 10, dt = .002;
 volatile float PitchAngleSens = 0, RollAngleSens = 0;
 volatile const float EulPitchTrim = -70, EulRollTrim = -28;
 volatile const float GyrPitchTrim = 50, GyrRollTrim = -100, GyrYawTrim = 90;
 volatile short PitchInput = 0, RollInput = 0, ModeSelect = 0;
 volatile int c = 0, maxC = 0;

 restart:
 {//I2C
 I2C2_CR1 &= 0x0000; //disable i2c
 I2C2_CR2 |= 0x070A; //10MHz clk, enable interrupts A
 I2C2_CCR |= 0x0032; //5us clk periods 0032 4B 14
 I2C2_TRISE &= 0x0000;
 I2C2_TRISE |= 0x0006; //500ns rise time 6
 I2C2_FLTR |= 0x0010; //enable analog filter
 I2C2_OAR1 |= 0x4055; //address = 0101010
 I2C2_CR1 |= 0x0401; //enable i2c and ack
 }

 {//IMU ini
 I2C2_CR1 |= (1 << 8); //Start bit
 while((I2C2_SR1 & 0x0001) != 0x0001); //wait for start bit
 I2C2_DR = (0x28<<1); //sensor address LSB=0 to transmit
 while((I2C2_SR1 & 0x0002) != 0x0002); //wait for address sent
 if(I2C2_SR2 != 1); //read to clear ADDR
 I2C2_DR = 0x3D; //OPR_MODE reg
 while((I2C2_SR1 & (1<<7)) != (1<<7)); //wait for TxE

 I2C2_DR = 0xC; //NDOF mode
 while((I2C2_SR1 & (1<<7)) != (1<<7)); //wait for TxE
 I2C2_CR1 |= (1 << 9); //Stop bit
 }

 while(1)
 {
 {//I2C
 if(c>maxC)
 maxC = c;
 c = 0;
 I2C2_CR1 |= (1<<10); //enable ack
 I2C2_CR1 |= (1 << 8); //Start bit
 while((I2C2_SR1 & 0x0001) != 0x0001) //wait for start bit
 {
 c++;
 if(c > 500)
 goto restart;
 }
 c = 0;
 I2C2_DR = (0x28<<1); //sensor address LSB=0 to transmit
 while((I2C2_SR1 & 0x0002) != 0x0002) //wait for address sent
 {
 c++;
 if(c > 500)
 goto restart;
 }
 c = 0;
 if(I2C2_SR2 != 1); //read to clear ADDR
 I2C2_DR = 0x14; //GYR DATA X L reg
 while((I2C2_SR1 & (1<<7)) != (1<<7)) //wait for TxE
 {
 c++;
 if(c > 500)
 goto restart;
 }
 c = 0;
 I2C2_CR1 |= (1 << 8); //Start bit
 while((I2C2_SR1 & 0x0001) != 0x0001) //wait for start bit
 {
 c++;
 if(c > 500)
 goto restart;
 }
 c = 0;
 I2C2_DR = ((0x28<<1) + 1); //temp sensor address LSB=1 to recieve
 while((I2C2_SR1 & 0x0002) != 0x0002) //wait for address sent
 {
 c++;
 if(c > 500)
 goto restart;
 }
 c = 0;

 if(I2C2_SR2 == 0x0001); //read to clear ADDR
 while((I2C2_SR1 & 0x0040) != 0x0040) //wait for RxNE
 {
 c++;
 if(c > 500)
 goto restart;
 }
 GyrXL = I2C2_DR;
 while((I2C2_SR1 & 0x0040) != 0x0040) //wait for RxNE
 {
 c++;
 if(c > 500)
 goto restart;
 }
 c = 0;
 GyrXM = I2C2_DR;
 while((I2C2_SR1 & 0x0040) != 0x0040) //wait for RxNE
 {
 c++;
 if(c > 500)
 goto restart;
 }
 c = 0;
 GyrYL = I2C2_DR;
 while((I2C2_SR1 & 0x0040) != 0x0040) //wait for RxNE
 {
 c++;
 if(c > 500)
 goto restart;
 }
 c = 0;
 GyrYM = I2C2_DR;
 while((I2C2_SR1 & 0x0040) != 0x0040) //wait for RxNE
 {
 c++;
 if(c > 500)
 goto restart;
 }
 c = 0;
 GyrZL = I2C2_DR;
 I2C2_CR1 &= 0xFBFF; //Nack
 I2C2_CR1 |= (1 << 9); //Stop bit
 while((I2C2_SR1 & 0x0040) != 0x0040) //wait for RxNE
 {
 c++;
 if(c > 500)
 goto restart;
 }
 c = 0;
 GyrZM = I2C2_DR;

 I2C2_CR1 |= (1<<10); //enable ack
 I2C2_CR1 |= (1 << 8); //Start bit

 while((I2C2_SR1 & 0x0001) != 0x0001) //wait for start bit
 {
 c++;
 if(c > 500)
 goto restart;
 }
 c = 0;
 I2C2_DR = (0x28<<1); //sensor address LSB=0 to transmit
 while((I2C2_SR1 & 0x0002) != 0x0002) //wait for address sent
 {
 c++;
 if(c > 500)
 goto restart;
 }
 c = 0;
 if(I2C2_SR2 != 1); //read to clear ADDR
 I2C2_DR = 0x1C; //Acc DATA X L reg
 while((I2C2_SR1 & (1<<7)) != (1<<7)) //wait for TxE
 {
 c++;
 if(c > 500)
 goto restart;
 }
 c = 0;
 I2C2_CR1 |= (1 << 8); //Start bit
 while((I2C2_SR1 & 0x0001) != 0x0001) //wait for start bit
 {
 c++;
 if(c > 500)
 goto restart;
 }
 c = 0;
 I2C2_DR = ((0x28<<1) + 1); //temp sensor address LSB=1 to recieve
 while((I2C2_SR1 & 0x0002) != 0x0002) //wait for address sent
 {
 c++;
 if(c > 500)
 goto restart;
 }
 c = 0;
 if(I2C2_SR2 == 0x0001); //read to clear ADDR
 while((I2C2_SR1 & 0x0040) != 0x0040) //wait for RxNE
 {
 c++;
 if(c > 500)
 goto restart;
 }
 c = 0;
 EulXL = I2C2_DR;
 while((I2C2_SR1 & 0x0040) != 0x0040) //wait for RxNE
 {
 c++;
 if(c > 500)

 goto restart;
 }
 c = 0;
 EulXM = I2C2_DR;
 while((I2C2_SR1 & 0x0040) != 0x0040) //wait for RxNE
 {
 c++;
 if(c > 500)
 goto restart;
 }
 c = 0;
 EulYL = I2C2_DR;
 I2C2_CR1 &= 0xFBFF; //Nack
 I2C2_CR1 |= (1 << 9); //Stop bit
 while((I2C2_SR1 & 0x0040) != 0x0040) //wait for RxNE
 {
 c++;
 if(c > 500)
 goto restart;
 }
 c = 0;
 EulYM = I2C2_DR;
 }
 GyrPitch = ((GyrXM << 8) + GyrXL) + GyrPitchTrim;
 GyrRoll = (GyrYM << 8) + GyrYL + GyrRollTrim;
 GyrYaw = (GyrZM << 8) + GyrZL + GyrYawTrim;
 EulRoll = -(((EulXM << 8) + EulXL) + EulRollTrim);
 EulPitch = -(((EulYM << 8) + EulYL) + EulPitchTrim);
 RollF = (float)EulRoll*32;
 PitchF = (float)EulPitch*32;
 GyrPitchF = (float)GyrPitch*32; //16
 GyrRollF = (float)GyrRoll*32;
 GyrYawF = -(float)GyrYaw;

 ModeSelect = TIM5_CCR3;

 PitchInput = TIM3_CCR2;
 RollInput = TIM5_CCR2;

 if(ModeSelect > 1750) //Acro Mode
 {
 PitchRateCurrent = GyrPitchF;
 PitchRateDesired = ((-((int)PitchInput - 1500) - -500) * ((PitchRateSens * 500) -
(PitchRateSens * -500)) / (500 - -500)) + (PitchRateSens * -500);
 PitchRateError = PitchRateDesired - PitchRateCurrent;
 PitchRateIntegral = PitchRateIntegral + (PitchRateError * dt);
 PitchRateDerivative = (PitchRateError - PitchRateErrorOld) / dt;
 PitchRateOutput = (PitchRateKp * PitchRateError) + (PitchRateKi * PitchRateIntegral) +
(PitchRateKd * PitchRateDerivative);
 if(PitchRateOutput > 2000)
 PitchRateOutput = 2000;
 else if(PitchRateOutput < - 2000)
 PitchRateOutput = -2000;

 PitchRateErrorOld = PitchRateError;

 RollRateCurrent = GyrRollF;
 RollRateDesired = ((((int)RollInput - 1500) - -500) * ((RollRateSens * 500) - (RollRateSens
* -500)) / (500 - -500)) + (RollRateSens * -500);
 RollRateError = RollRateDesired - RollRateCurrent;
 RollRateIntegral = RollRateIntegral + (RollRateError * dt);
 RollRateDerivative = (RollRateError - RollRateErrorOld) / dt;
 RollRateOutput = (RollRateKp * RollRateError) + (RollRateKi * RollRateIntegral) +
(RollRateKd * RollRateDerivative);
 if(RollRateOutput > 2000)
 RollRateOutput = 2000;
 else if(RollRateOutput < - 2000)
 RollRateOutput = -2000;
 RollRateErrorOld = RollRateError;

 YawRateCurrent = GyrYawF;
 YawRateDesired = ((((int)TIM3_CCR4 - 1500) - -500) * ((YawRateSens * 500) -
(YawRateSens * -500)) / (500 - -500)) + (YawRateSens * -500);
 YawRateError = YawRateDesired - YawRateCurrent;
 YawRateIntegral = YawRateIntegral + (YawRateError * dt);
 YawRateDerivative = (YawRateError - YawRateErrorOld) / dt;
 YawRateOutput = (YawRateKp * YawRateError) + (YawRateKi * YawRateIntegral) +
(YawRateKd * YawRateDerivative);
 if(YawRateOutput > 2000)
 YawRateOutput = 2000;
 else if(YawRateOutput < - 2000)
 YawRateOutput = -2000;
 YawRateErrorOld = YawRateError;

 ThrottleOutput = (((TIM3_CCR3 - 1000) * (4000 - 2000)) / (2000 - 1000)) + 2000;
 }

 if(ModeSelect < 1750) //Angle Mode
 {
 if(ModeSelect < 1250) //Beginner Mode
 {
 PitchAngleSens = 30;
 RollAngleSens = 30;
 }
 else
 {
 PitchAngleSens = 75;
 RollAngleSens = 75;
 }
 PitchAngleCurrent = PitchF;
 PitchAngleDesired = ((-((int)PitchInput - 1500) - -500) * ((PitchAngleSens * 500) -
(PitchAngleSens * -500)) / (500 - -500)) + (PitchAngleSens * -500);
 PitchAngleError = PitchAngleDesired - PitchAngleCurrent;
 PitchAngleIntegral = PitchAngleIntegral + (PitchAngleError * dt);
 PitchAngleDerivative = (PitchAngleError - PitchAngleErrorOld) / dt;
 PitchAngleOutput = (PitchAngleKp * PitchAngleError) + (PitchAngleKi *
PitchAngleIntegral) + (PitchAngleKd * PitchAngleDerivative);

 PitchAngleErrorOld = PitchAngleError;

 RollAngleCurrent = RollF;
 RollAngleDesired = ((((int)RollInput - 1500) - -500) * ((RollAngleSens * 500) -
(RollAngleSens * -500)) / (500 - -500)) + (RollAngleSens * -500);
 RollAngleError = RollAngleDesired - RollAngleCurrent;
 RollAngleIntegral = RollAngleIntegral + (RollAngleError * dt);
 RollAngleDerivative = (RollAngleError - RollAngleErrorOld) / dt;
 RollAngleOutput = (RollAngleKp * RollAngleError) + (RollAngleKi * RollAngleIntegral) +
(RollAngleKd * RollAngleDerivative);
 RollAngleErrorOld = RollAngleError;

 PitchRateCurrent = GyrPitchF;
 PitchRateDesired = PitchAngleOutput;
 PitchRateError = PitchRateDesired - PitchRateCurrent;
 PitchRateIntegral = PitchRateIntegral + (PitchRateError * dt);
 PitchRateDerivative = (PitchRateError - PitchRateErrorOld) / dt;
 PitchRateOutput = (PitchRateKp * PitchRateError) + (PitchRateKi * PitchRateIntegral) +
(PitchRateKd * PitchRateDerivative);
 if(PitchRateOutput > 2000)
 PitchRateOutput = 2000;
 else if(PitchRateOutput < - 2000)
 PitchRateOutput = -2000;
 PitchRateErrorOld = PitchRateError;

 RollRateCurrent = GyrRollF;
 RollRateDesired = RollAngleOutput;
 RollRateError = RollRateDesired - RollRateCurrent;
 RollRateIntegral = RollRateIntegral + (RollRateError * dt);
 RollRateDerivative = (RollRateError - RollRateErrorOld) / dt;
 RollRateOutput = (RollRateKp * RollRateError) + (RollRateKi * RollRateIntegral) +
(RollRateKd * RollRateDerivative);
 if(RollRateOutput > 2000)
 RollRateOutput = 2000;
 else if(RollRateOutput < - 2000)
 RollRateOutput = -2000;
 RollRateErrorOld = RollRateError;

 YawRateCurrent = GyrYawF;
 YawRateDesired = ((((int)TIM3_CCR4 - 1500) - -500) * ((YawRateSens * 500) -
(YawRateSens * -500)) / (500 - -500)) + (YawRateSens * -500);
 YawRateError = YawRateDesired - YawRateCurrent;
 YawRateIntegral = YawRateIntegral + (YawRateError * dt);
 YawRateDerivative = (YawRateError - YawRateErrorOld) / dt;
 YawRateOutput = (YawRateKp * YawRateError) + (YawRateKi * YawRateIntegral) +
(YawRateKd * YawRateDerivative);
 if(YawRateOutput > 2000)
 YawRateOutput = 2000;
 else if(YawRateOutput < - 2000)
 YawRateOutput = -2000;
 YawRateErrorOld = YawRateError;

 ThrottleOutput = (((TIM3_CCR3 - 1000) * (4000 - 2000)) / (2000 - 1000)) + 2000;

 if(ModeSelect < 1250) //Beginner Mode
 {
 ThrottleOutput = (((TIM3_CCR3 - 1000) * (3500 - 2000)) / (2000 - 1000)) + 2000;
 }
 }

 MotorA = ThrottleOutput + PitchRateOutput + RollRateOutput - YawRateOutput + 100;
 MotorB = ThrottleOutput + PitchRateOutput - RollRateOutput + YawRateOutput + 100;
 MotorC = ThrottleOutput - PitchRateOutput + RollRateOutput + YawRateOutput + 100;
 MotorD = ThrottleOutput - PitchRateOutput - RollRateOutput - YawRateOutput + 100;

 if(MotorA < 2100)
 MotorA = 2100;
 else if(MotorA > 3980)
 MotorA = 3980;
 if(MotorB < 2100)
 MotorB = 2100;
 else if(MotorB > 3980)
 MotorB = 3980;
 if(MotorC < 2100)
 MotorC = 2100;
 else if(MotorC > 3980)
 MotorC = 3980;
 if(MotorD < 2100)
 MotorD = 2100;
 else if(MotorD > 3980)
 MotorD = 3980;

 if(TIM3_CCR1 < 1500) //Kill Switch
 {
 MotorA = 1850;
 MotorB = 1850;
 MotorC = 1850;
 MotorD = 1850;
 PitchAngleIntegral = 0;
 RollAngleIntegral = 0;
 PitchRateIntegral = 0;
 RollRateIntegral = 0;
 YawRateIntegral = 0;
 }

 if(ThrottleOutput < 2050) //Prevent Integral Windup while on the ground
 {
 PitchAngleIntegral = 0;
 RollAngleIntegral = 0;
 PitchRateIntegral = 0;
 RollRateIntegral = 0;
 YawRateIntegral = 0;
 }

 TIM4_CCR1 = MotorA;
 TIM4_CCR2 = MotorB;

 TIM4_CCR3 = MotorD;
 TIM4_CCR4 = MotorC;
 GPIOD_ODR = GPIOD_ODR ^ (1); //Looptime test

 }
}

void TIM5_IRQHandler()
{
 TIM5_SR &= 0xFFFE; //clear interrupt flag
 TIM5_CR1 |= 1;
}

void TIM4_IRQHandler()
{
 TIM4_SR &= 0xFFFE; //clear interrupt flag
 TIM4_CR1 |= 1;
}

void TIM3_IRQHandler()
{
 TIM3_SR &= 0xFFFE; //clear interrupt flag
 TIM3_CR1 |= 1;
}

