

Phased Array in Sound

Austin Brummett, Electrical Engineering

Project Advisor: Dr. Dick Blandford

Date:

Evansville, Indiana

Acknowledgements

 I would like to thank Dr. Blandford for proposing this project, helping with the

conceptual work, and making sure I did not fail. I would also like to thank Jeff Cron for help

with 3D printing the enclosure for the project.

Table of Contents

I. Introduction

II. Project Definition

A. Client Specifications

III. Design Approach

A. Hardware Design

B. Software Design

C. Constraints, Safety, & Standards

D. Testing

E. Costs

IV. Results and Conclusion

V. References

VI. Appendices

A. Pseudo Code

B. Software Code

C. Hardware Schematic

D. PCB Layout

List of Figures

Figure 1: Hardware Block Diagram

Figure 2: TLC7254CN

Figure 3: LM358

Figure 4: STM32F446RET-Nucleo ARM Board

Figure 5: Software Flow Chart

Figure 6: +56˚ phase shift between Speaker 1 and Speaker 5

Figure 7: -56˚ phase shift between Speaker 1 and Speaker 5

Figure 8: Final Product Full View

Figure 9: Internal Wiring

List of Tables

Table 1: Cost of Project

I. Introduction

 Phased array (PA) systems are part of many different fields such as long-range acoustic

modern transmission, sonar imaging, and ultrasound. More specifically, phased array sound

systems are used in the medical field for ultrasound technologies from industrial nondestructive

testing to noninvasively examine a heart. They are also used in nondestructive testing for finding

flaws in welds, corrosion detection, and measuring the thickness of pipes. Another method of

doing nondestructive testing is using Radiographic Testing (RT), but it is much more expensive

and Phased Array Ultrasonic Testing (PAUT) is also more accurate, easier to set up, can create a

3D image, and is portable. These things make it a superior option. PA’s are also conceptually

used more because they can be made portable and can be modified to work at multiple points in

the frequency spectrum.

 This project is based around five independently-controllable speakers to create a phased

array speaker system that generates flexible, directional sound. The idea behind the phased array

is that by changing the how the speakers are driven the angle of the maximum intensity of the

output wave is shifted.

II. Problem Definition

The biggest issue with use of phased arrays is that they are expensive, generally in the

thousands of dollars range. A phased array in sound provides the issue of creating a sample of

the phased array system that can be used as a tool to demonstrate this concept. To create this

system a true time delay needs to be between the elements which means a microcontroller is

well-suited to the task. The goal then is to create an affordable line array of speakers that can

demonstrate the concepts of a phased array system. The final system should have a way for the

user to tune the direction via a potentiometer or similar instrumentation. The output signal will

need to be put through at least a simple low pass filter to get rid of quantization error and then to

an audio amplifier.

A. Client Specifications

• Tunable phase shift based on a potentiometer

• At least 5 speakers separated in a line array

• 8-bit ADC and DAC input and output

• Low pass filter to lower quantization error

• Amplifier to output speakers

III. Solutions

A. Hardware

Figure 1 shows a block diagram of the proposed design. The hardware for this project is

minimal, but each part was carefully selected to be able to achieve the client specifications.

Figure 1: Hardware Block Diagram

 The first piece of hardware is the digital-to-analog convertor (DAC). For this design, the

DAC needed to be able to update multiple speakers simultaneously and output at a resolution of

at least 8 bits. The TLC7524 DAC [1], pictured in Figure 2, was selected. This specific DAC has

a Write and Chip Select pin and only one channel which led me to use five of them. The output

of the TLC7524 is current unbuffered, so an LM358 Dual Operational Amplifier [2], pictured in

Figure 3, was connected to get a voltage output. Connected to the output of the LM358 was a

simple RC Lowpass Filter centered at 22.05 kHz, which was half the sampling frequency. This

DAC was a second choice due to an oversight in the original design. This will be addressed in

the Testing section.

Figure 2: TLC7524CN DAC

Figure 3: LM358 Dual Op Amp

The project is designed on the Cortex M4 platform, which is designed with digital signal

processing (DSP) capabilities. The STM32F446 board, pictured in Figure 4, was chosen out of

familiarity, but the project could be implemented on a smaller M4 microcontroller if necessary.

The processor speed is fast enough for the needs of the project and there are plenty of onboard

analog-to-digital converters (ADC) with multiple channels. The ADCs also have a

programmable resolution and sampling clock. The Nucleo board also supports a phased lock

loop (PLL) onboard that allows it to be clocked at 180 MHz, which is beneficial when working

with audio signals and slow processes like the ADC.

 Figure 4: STM32F446RET-Nucleo ARM Board [3]

 The potentiometer is connected to one of the ADC channels on the Nucleo board to

determine the users desired phase shift. The adjustment is based off the potentiometers current

position and inserting a time delay between each of the DAC outputs to cause a phase shift in the

time domain. The Nucleo board is calculating the approximate time delay between each of the

DAC channels. These are sent to the 8-bit Data Bus from GPIOC of the Nucleo Board to each of

the DAC channels which are selected when needed by GPIOH0, a common chip select channel,

and GPIOB5-9, as a write channel. The output of the DAC is sent through the op amp and is then

sent through the passive lowpass filter. The DAC is setup in such a way that the voltage fed into

the input amplifier built into the Sound Force 540 Speakers [4] to between 0-500mV so it does

not damage them. A hardware schematic and PCB layout can be found in Appendices C and D,

respectively.

B. Software

The software uses the microcontroller to grab the ADC value from the potentiometer to

determine the phase shift, create a sine wave at 1 kHz, and send that to each of the external

DACs. Figure 5 is a flow chart of the program.

Figure 5: Software Flow Chart

The complication of the software was how slow the default ADC sampling rate was

because it took 15 clock cycles at 12-bits. To lower that, it was changed to 8-bit making it 11

clock cycles, but this was still causing blurbs in the output sound. To fix this, direct memory

access (DMA) was used because it significantly lowered the time it took to read from the ADC1

data register, and the clock speed was increased to 180 MHz. This got rid of the blurbs that made

the output sound like a helicopter.

The result from the ADC is stored in a one element array that was checked against a set

of if-statements that correlated to a phase shift. Then when the timer interrupts the phase shift,

which is a shift in the 360-point array generated at the start of operation, is checked to see if it is

positive or negative and then the absolute value of the shift that is added from speaker zero to

four if it is positive and four to zero if it is negative. For each speaker the time delay is multiplied

by an increasing increment, i.e., with a shift of 55 speaker 0 is loaded at point[i+1*shift] and

speaker 1 is loaded at point[i+2*shift], and so on down the array.

After the interrupt is finished the timer is restarted. After the timer is restarted a new

ADC value is read in through DMA2 stream 0. Then a new shift is set and the process repeats.

Pseudocode and the implemented code can be found in Appendices A and B, respectively.

C. Constraints, Safety, & Standards

For this project ISO/ICE/IEEE standard 24748-1-2018 [4] was considered. This standard

relates to the life cycle of software. The project has software, so sustainability of the software is

important. If this were to be manufactured for mass classroom use, the manufacturer would

likely want to create a PCB that includes the microprocessor built into it and to create a more

size efficient 3D printed enclosure because the print time on the one used for this project was

inefficient.

In terms of health consideration, the project needed to be designed so that it did not cause any

permanent hearing damage to anyone listening to it for extended periods of time. According to

OSHA [5], that to prevent damage the sound should be at or under 60dB, and if at 85dB it should

not be listened to for more than 8 hours a day. Keeping the project at or under 60dB allows it to

be quiet enough to be talked over and not cause damage, it also prevents it from being a noise

polluter in the environment it is being used in. This was achieved by using a noise spectrometer

application to measure output of all five speakers to keep it at or under 60dB.

Other than sound levels, a danger is that there are long running wires in the enclosure to the

audio jacks, so to make sure they don’t become a fire hazard they should be taped down with

electrical tape and bundled. This will also stop them from harming anyone who might encounter

the wires while servicing the device.

D. Testing

Testing for this project had multiple stages. The first stage was the digital-to-analog

convertor testing phase. Originally, the TLC5628 was used because it was an 8-bit 8 channel

device that had a SPI interface. An alternate device was ordered by mistake, the TLV5628,

which does not have a SPI interface, instead it had a microwire interface which was incompatible

with the microcontroller that was being used. To remedy this, an 8-bit data bus was set up and

five TLC7524 DAC were set up to generate the sine waves. After the DACs were interfaced the

outputs were confirmed using an oscilloscope and then audibly tested using the connected

speakers. Output confirmation is show in Figures 6 and 7, speaker 1 is channel 2 and speaker 5 is

channel 1 in both figures. The delay came out to be around 350 µs which is about a 56˚ shift.

This allowed me to more accurately spaces the speakers using the equation:

𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 =
𝜆𝜆

(1 + sin 𝜃𝜃)

which returned a maximum center to center spacing of approximately 10 inches. This equation is

commonly used in phased array ultrasonics to prevent the issue of grating lobes.

Figure 6: +56˚ phase shift between Speaker 1 and Speaker 5

Figure 7: -56˚ phase shift between Speaker 1 and Speaker 5

E. Costs

Table 1 shows costs of this project. The total cost is $155.75, which is within the budget of $300

proposed to the Department of Engineering and Computer Science at the University of

Evansville. If this project were built again it would cost $114.34 because the part list would be

predefined.

Table 1: Cost of Project

Part Name Manufacturer Part
Number

Price/Unit Quantity Total Price

IC 8Bit 10us Octal DAC S/O 16-Dip TLV5628IN 7.33 2 14.66

8 Ohm 3W Top Port Speaker AS07108PO-3-R 4.25 6 25.5
450 Ω Resistors 1.26 10 12.6
.1µF Capacitors 0.87 5 4.35
10kΩ Potentiometer 7.7 1 7.7
PCB (Pack of 1) 55.37 1 55.37

CONN JACK MONO 3.5MM R/A MJ-3536 1.25 1 1.25

Dual Operational Amplifier LM358 0.84 5 4.2
Audio Jack 3.5mm ----- 1.25 5 6.25
STM32F446RET Nucleo Board 20 1 20
Soundforce 540(Box of 7 pairs) 58.97 1 58.97
8 bit single channel DAC TLC7524 4.13 5 20.65

Total Sum 231.5

Total Budget 300 Development Cost 155.75
Leftover 144.25 Final Project Cost 173.24

IV. Results and Conclusions

This project meets all the client’s minimum requirements. There are some expansions

that could be added to this project such as adding the ability to feed in an input signal to the

microcontroller instead of generating the signal in the software. To further improve on the

design and to lower the number of ports used on the microcontroller an 8-bit serial in parallel

out shift could be used to send the information to the multiple DACs. For the purposes of the

project, the current process is satisfactory. The final product is shown in Figure 8 and 9.

Figure 8: Final Product Full View

Figure 9: Internal Wiring

V. References

[1] Texas Instruments. “8-Bit Multiplying Digital-to-Analog Convertor”. [Online].
Available: http://www.ti.com/lit/ds/slas061d/slas061d.pdf
[2] Texas Instruments. “LM358 Low-Power, Dual-Operational Amplifiers”. [Online].
Available: http://www.ti.com/lit/ds/symlink/lm158-n.pdf
[3] Amazon. “STM4446re Nucleo Board”. [Online].
Available: https://www.amazon.com/gp/product/B014IXUB1M/ref=oh_aui_detailpage_o09_
s00?ie=UTF8 &psc=1
 [4] “Sound Force 540 Powered Computer Speaker Pair”. [Online] Available:
hhttps://www.parts-express.com/sound-force-540-powered-computer-speaker-pair--319-
128 [5] ‘ISO/IEC/IEEE 24748-1:2018’ [Online] Available:
https://www.iso.org/standard/72896.html
[6] ‘How Loud is Too Loud?' [Online] Available:
https://www.osha.gov/SLTC/noisehearingconservation/loud.html

https://www.amazon.com/gp/product/B014IXUB1M/ref=oh_aui_detailpage_o09_s00?ie=UTF8%20&psc=1
https://www.amazon.com/gp/product/B014IXUB1M/ref=oh_aui_detailpage_o09_s00?ie=UTF8%20&psc=1
https://www.iso.org/standard/72896.html
https://www.osha.gov/SLTC/noisehearingconservation/loud.html

VI. Appendices

A. Pseudo Code

#include <stm32f4xx.h>
int main (){

 initialize gpio, timer, dma, adc1
• set timer to interrupt 44.1kHz
• adc1 to 8-bit resolution for potentiometer (0 to 255)

 while 1
• get input from pot. and set “time delay”

 end
}

Void tim3_interrupt (){

 Set channel based on sign of time delay

 set DAC channel 1
 delay
 set DAC channel 2
 delay
 Repeat until Channel 5 set and loaded

}

B. Software Code

/* Austin Brummett
Senior Project: Phased Array of Sound
Project Advisor: Dr. Blandford
*/

// header files
#include "stm32f4xx.h" // Device header
#include "stdlib.h" // abs
#include "math.h" // sin
#include "TimerDelay.h" // Delay_ms
#include "limits.h" // UINT_MAX

// Constants
#define PI 22/7 // substitute for M_PI because it wasn't available
#define MAXVOLUME 255.00 // 2^8-1 == 255

// Functions
void SetupMCU(int sampleRate); // Setup Peripherals

volatile unsigned int arr[44]; //array being accessed
// Global Variables
unsigned int i = 0; // index for arr[] in
volatile int td = 0; // "time delay" to simulate the change in
volatile uint16_t tmp[1]; // temporary variable to grab adc data
const int sampleFreq = 44100; // sample frequency of sine wave

//********* Start Main Function
**
int main(void){
 /******** Pre-Setup *********/

 // Fill global array
 for(int j = 0; j < 44; j++){
 arr[j] = MAXVOLUME*((sin(2.0*PI*(double)j/44)+1.0)/2.0);
 }

 /******** Setup Microcontroller ***********/
 SetupMCU(sampleFreq); // Setup GPIO, Timer, ADC, DMA, and Clock
 NVIC_EnableIRQ(TIM3_IRQn); // Enable timer 3 interrupt
 GPIOA->ODR |= 1 << 7; // turn on LED to signal power on and setup done
 GPIOB->ODR = 0x3E0; // turn all DACs off
 /********* Start Everything *************/
 ADC1->CR2 |= ADC_CR2_DMA | ADC_CR2_DDS; // DMA and DDS
 TIM3->CR1 |= TIM_CR1_CEN; // Enable Timer 3
 while(1){
 ADC1->CR2 |= ADC_CR2_SWSTART; // bit 30 does software start of
A/D Conversion
 // constantly check for the new "time delay", the number of
cycles to skip
 // tmp is read in with DMA
 // td is between -7 and 7
 if(tmp[0] < 28) td = -7;
 else if(tmp[0] < 56) td = -5;
 else if(tmp[0] < 85) td = -3;
 else if(tmp[0] < 113) td = -1;
 else if(tmp[0] < 142) td = 0;
 else if(tmp[0] < 170) td = 1;
 else if(tmp[0] < 198) td = 3;
 else if(tmp[0] < 226) td = 5;
 else td = 7;

 }
}
//********* End Main Function

// Name: Timer 3 Interrupt Handler
// Purpose: Loads the DACs at a frequency of 44100 Hz or 22.6us
// based on the current value of td
void TIM3_IRQHandler(){

 int td_t = abs(td); // absolute value so the array can be shifted
correctly
 int k[5]; // unnecessarily an array

 if(td > 0){
 GPIOH->ODR &= ~(1<<0); // Set /cs low to set new inputs

 k[0] = (i+0*td_t)%43; // no delay

 GPIOB->ODR &= ~(1 << 5); // !WR -- Pick device to WR
 GPIOC->ODR = arr[k[0]]; // send data
 GPIOB->ODR |= 1 << (5); // !WR Lock transfer

 k[1] = (int)(i +1*td_t)%43;
 GPIOB->ODR &= ~(1 << 6); // !WR -- Pick device to WR
 GPIOC->ODR = arr[k[1]]; // send data
 GPIOB->ODR |= 1<< 6; // !WR Lock transfer

 k[2] = (int)(i +2*td_t)%43;
 GPIOB->ODR &= ~(1 << 7); // !WR -- Pick device to WR
 GPIOC->ODR = arr[k[2]]; // send data
 GPIOB->ODR |= 1<< (7); // !WR Lock transfer

 k[3] = (int)(i +3*td_t)%43;
 GPIOB->ODR &= ~(1 << 8); // !WR -- Pick device to WR
 GPIOC->ODR = arr[k[3]]; // send data
 GPIOB->ODR |= 1<< 8; // !WR Lock tran 8fer

 k[4] = (int)(i +4*td_t)%43;
 GPIOB->ODR &= ~(1 << 9); // !WR -- Pick device to WR
 GPIOC->ODR = arr[k[4]]; // send data
 GPIOB->ODR |= 1 << 9; // !WR Lock transfer

 GPIOH->ODR |= 1 << 0; // set /cs high to hold all

 }else if(td < 0){
 GPIOH->ODR &= ~(1<<0); // Set /cs low to set new inputs

 k[0] = (i+0*td_t)%43;
 GPIOB->ODR &= ~(1 << 9); // !WR -- Pick device to WR
 GPIOC->ODR = arr[k[0]]; // send data
 GPIOB->ODR |= 1 << 9; // !WR Lock transfer

 k[1] = (int)(i + 1*td_t)%43;
 GPIOB->ODR &= ~(1 << 8); // !WR -- Pick device to WR
 GPIOC->ODR = arr[k[1]]; // send data
 GPIOB->ODR |= 1<< 8; // !WR Lock transfer

 k[2] = (int)(i +2*td_t)%43;
 GPIOB->ODR &= ~(1 << 7); // !WR -- Pick device to WR

 GPIOC->ODR = arr[k[2]]; // send data
 GPIOB->ODR |= 1<< 7; // !WR Lock transfer

 k[3] = (int)(i +3*td_t)%43;
 GPIOB->ODR &= ~(1 << 6); // !WR -- Pick device to WR
 GPIOC->ODR = arr[k[3]]; // send data
 GPIOB->ODR |= 1<< 6; // !WR Lock transfer

 k[4] = (int)(i +4*td_t)%43;
 GPIOB->ODR &= ~(1 << 5); // !WR -- Pick device to WR
 GPIOC->ODR = arr[k[4]]; // send data
 GPIOB->ODR |= 1<< 5; // !WR Lock transfer
 GPIOH->ODR |= 1 << 0; // set /cs high to hold all
 }
 else{ // if at 0 no delay all on
 GPIOH->ODR &= ~(1<<0); // Set /cs low to set new inputs
 k[0] = (i)%43;
 GPIOB->ODR = 0; // All on
 GPIOC->ODR = arr[k[0]]; // send data

 k[1] = (i)%43;
 GPIOC->ODR = arr[k[1]]; // send data

 k[2] = (i)%43;
 GPIOC->ODR = arr[k[2]] >> 1; // send data

 k[3] = (i)%43;
 GPIOC->ODR = arr[k[3]]; // send data

 k[4] = (i)%43;

 GPIOC->ODR = arr[k[4]]; // send data
 GPIOB->ODR = 0x3E0; // all off

 GPIOH->ODR |= 1 << 0; // set /cs high to hold all
 }

 i++;
 if(i == UINT_MAX) // added limit.h, fixed the stutter in the
output
 i = 0;
 // Restart Timer
 TIM3->SR &= 0xFFFE;
 TIM3->CR1 |= TIM_CR1_CEN;

}
// End TIM3_IRQHandler

// Name: SetupMCU
// Purpose: Sets up timer 3 to interrupt at f = 44100 Hz,
// GPIO ports for the D/A convertor,
// Sets System Clock to 180Mhz,
// Sets up ADC channel 1 to read from
potentiometer at 8 bits
void SetupMCU(int sampleRate){
// // Reset clock to 180MHz

 RCC->CFGR = 0x00000000; // reset clock configuration reg.
 RCC->CR &= 0xFEF6FFFF; // reset hson, csson, pllon
 RCC->CR |= RCC_CR_HSEON; // turn on hse clock
 while((RCC->CR & RCC_CR_HSERDY) == 0); // wait untile hse is ready
 RCC->PLLCFGR = 0x27405A08; // set PLLP = 0, PLLN = 360, PLLM = 8,

 // PLLQ = 7, PLL Src = HSE
 FLASH->ACR &= 0xFFFFFFF8; // set flash wait states to 5
 FLASH->ACR |= 0x5;
 RCC->CR |= RCC_CR_PLLON; // enable PLL on bit
 while((RCC->CR & RCC_CR_PLLRDY) == 0); // wait for PLL to lock on
 RCC->CFGR = 0x9402; //APB2/2, APB1/4, AHB/1
 // Clock bits
 RCC->AHB1ENR |= RCC_AHB1ENR_GPIOAEN; // GPIOA
 RCC->AHB1ENR |= RCC_AHB1ENR_GPIOBEN; // GPIOB
 RCC->AHB1ENR |= RCC_AHB1ENR_GPIOCEN; // GPIOC
 RCC->AHB1ENR |= RCC_AHB1ENR_GPIOHEN; // GPIOH
 RCC->APB2ENR |= RCC_APB2ENR_ADC1EN; // adc1 for pot
 RCC->APB1ENR |= RCC_APB1ENR_TIM3EN; // timer3 for updating dacs
 RCC->AHB1ENR |= RCC_AHB1ENR_DMA2EN; // Enable DMA2
 // I/O Bits
 GPIOA->MODER |= 3<<5*2 | 1 << 7*2; // PA5 Analog -- ADC1, PA7 Dig. Out
 GPIOA->OSPEEDR |= 0xC000; // High speed PA7/ timer
 GPIOA->PUPDR &= 0xFFFFF0FF; // A4 & A5 npup npdown

 GPIOB->MODER |= (1<<5*2)+(1<<6*2)+(1<<7*2)+(1<<8*2)+(1<<9*2);// PB5-9,
!WR Bits
 GPIOB->OSPEEDR |= 0xFFC00; // High Speed PB5-9
 GPIOB->MODER |= 2<<4*2; //Timer 3 PB4 Alt Function
 GPIOB->AFR[0] |= 2 << 4*4; // timer 3

 GPIOC->MODER |= 0x5555; // PC0-7 Digital Output
 GPIOC->OSPEEDR |= 0xFFFF; // High Speed PC0-7

 GPIOH->MODER |= 1<<0*2; // PH0 !CS bus
 GPIOH->OSPEEDR |= 3 << 0*2; // high speed PH0

 // Timer Bits
 int clockDiv = ceil((90000000/sampleRate));
 TIM3->DIER |= TIM_DIER_UIE; // TIE, UIE, CCIE
 TIM3->CR1 |= TIM_CR1_ARPE; // auto reload buffered
 TIM3->PSC = 0; // no prescaling
 TIM3->ARR = clockDiv;// (180MHZ/2)/2040 44.1kHz
 TIM3->EGR |=1; // Event Generation enabled

 // ADC Setup
 ADC1->CR2 |= ADC_CR2_ADON; // ADC on
 ADC1->CR1 |= 2 << 24; // 8 bit
 ADC1->CR1 |= ADC_CR1_SCAN; // scan mode
 ADC1->CR2 |= ADC_CR2_CONT; // continuous mode
 ADC1->SQR3 &=0x0; // clear out the SQR3
 ADC1->SQR3 |= 5; // bits 4:0 are channel number for first conversion

 // channel is set to 5 which corresponds to PA5
 ADC->CCR |= 3 << 8*2; // fastest possible conversion time

 // DMA Setup
 DMA2_Stream0->CR &= ~DMA_SxCR_CHSEL_0; // select channel 0
 DMA2_Stream0->CR |= 3 << 17;// high priority
 DMA2_Stream0->CR |= 0 << 11; // 16 bits ADC data
 DMA2_Stream0->CR |= 0 << 13; // 16 bits memory data size
 DMA2_Stream0->CR |= 1 << 10; // memory increment
 DMA2_Stream0->CR |= 1 << 8; // circular mode
 DMA2_Stream0->NDTR = 1; // one adc conversion
 DMA2_Stream0->PAR = (uint32_t)&ADC1->DR; // set to ADC1 DR address
 DMA2_Stream0->M0AR = (uint32_t)&tmp[0]; // Store values in tmp[0]
 DMA2_Stream0->CR |= DMA_SxCR_EN; // DMA Enable
}
// End

C. Hardware Schematic

D. PCB Layout

